1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// re2v $INPUT -o $OUTPUT -cf --recursive-functions -Wno-nondeterministic-tags
import arrays
import log
import os
/*!conditions:re2c*/
// Use a small buffer to cover the case when a lexeme doesn't fit.
// In real world use a larger buffer.
const bufsize = 100
const mtag_root = -1
const tag_none = -1
// An m-tag tree is a way to store histories with an O(1) copy operation.
// Histories naturally form a tree, as they have common start and fork at some
// point. The tree is stored as an array of pairs (tag value, link to parent).
// An m-tag is represented with a single link in the tree (array index).
struct MtagElem {
elem int
pred int
}
type MtagTrie = []MtagElem
// Append a single value to an m-tag history.
fn add_mtag(mut trie &MtagTrie, mtag int, value int) int {
trie = arrays.concat(trie, MtagElem{value, mtag})
return trie.len - 1
}
// Recursively unwind tag histories and collect version components.
fn unwind(trie MtagTrie, x int, y int, str []u8) []string {
// Reached the root of the m-tag tree, stop recursion.
if x == mtag_root && y == mtag_root {
return []
}
// Unwind history further.
mut result := unwind(trie, trie[x].pred, trie[y].pred, str)
// Get tag values. Tag histories must have equal length.
if x == mtag_root || y == mtag_root {
panic("tag histories have different length")
}
ex := trie[x].elem
ey := trie[y].elem
if ex != tag_none && ey != tag_none {
// Both tags are valid string indices, extract component.
result = arrays.concat(result, str[ex..ey].str())
} else if !(ex == tag_none && ey == tag_none) {
panic("both tags should be tagNone")
}
return result
}
struct State {
mut:
file os.File
yyinput []u8
yycursor int
yymarker int
yylimit int
token int
yycond YYCONDTYPE
yystate int
trie MtagTrie
/*!stags:re2c format = '\n\t@@ int'; */
/*!mtags:re2c format = '\n\t@@ int'; */
l1 int
l2 int
f1 int
f2 int
p1 int
p2 int
p3 int
p4 int
yyaccept int
}
enum Status {
lex_end
lex_ready
lex_waiting
lex_bad_packet
lex_big_packet
}
fn fill(mut st &State) Status {
shift := st.token
used := st.yylimit - st.token
free := bufsize - used
// Error: no space. In real life can reallocate a larger buffer.
if free < 1 { return .lex_big_packet }
// Shift buffer contents (discard already processed data).
copy(mut &st.yyinput, st.yyinput[shift..shift+used])
st.yycursor -= shift
st.yymarker -= shift
st.yylimit -= shift
st.token -= shift
/*!stags:re2c format = '\n\tif st.@@ != tag_none { st.@@ -= shift };'; */
// Fill free space at the end of buffer with new data.
pos := st.file.tell() or { 0 }
if n := st.file.read_bytes_into(u64(pos), mut st.yyinput[st.yylimit..bufsize]) {
st.yylimit += n
}
st.yyinput[st.yylimit] = 0 // append sentinel symbol
return .lex_ready
}
/*!re2c
re2c:api = record;
re2c:eof = 0;
re2c:tags = 1;
re2c:tags:negative = "tag_none";
re2c:variable:yyrecord = st;
re2c:define:YYFN = ["lex;Status", "mut st;State"];
re2c:define:YYFILL = "return .lex_waiting";
re2c:define:YYMTAGP = "@@ = add_mtag(mut &st.trie, @@, st.yycursor)";
re2c:define:YYMTAGN = "@@ = add_mtag(mut &st.trie, @@, tag_none)";
crlf = '\r\n';
sp = ' ';
htab = '\t';
ows = (sp | htab)*;
digit = [0-9];
alpha = [a-zA-Z];
vchar = [\x1f-\x7e];
tchar = [-!#$%&'*+.^_`|~] | digit | alpha;
obs_fold = #f1 crlf (sp | htab)+ #f2;
obs_text = [\x80-\xff];
field_name = tchar+;
field_vchar = vchar | obs_text;
field_content = field_vchar ((sp | htab)+ field_vchar)?;
field_value_folded = (field_content* obs_fold field_content*)+;
header_field_folded = field_value_folded ows;
token = tchar+;
qdtext
= htab
| sp
| [\x21-\x5B\x5D-\x7E] \ '"'
| obs_text;
quoted_pair = '\\' ( htab | sp | vchar | obs_text );
quoted_string = '"' ( qdtext | quoted_pair )* '"';
parameter = #p1 token #p2 '=' #p3 ( token | quoted_string ) #p4;
media_type = @l1 token '/' token @l2 ( ows ';' ows parameter )*;
<media_type> media_type ows crlf {
mt := st.yyinput[st.l1..st.l2].str()
log.debug("media type: $mt")
pnames := unwind(st.trie, st.p1, st.p2, st.yyinput)
log.debug("pnames: $pnames")
pvals := unwind(st.trie, st.p3, st.p4, st.yyinput)
log.debug("pvals: $pvals")
st.token = st.yycursor
return lex(mut st)
}
<header> header_field_folded crlf {
folds := unwind(st.trie, st.f1, st.f2, st.yyinput)
log.debug("folds: $folds")
st.token = st.yycursor
return lex(mut st)
}
<*> * { return .lex_bad_packet }
<*> $ { return .lex_end }
*/
fn test(expect Status, packets []string) {
// Create a "socket" (open the same file for reading and writing).
fname := "pipe"
mut fw := os.create(fname) or { panic("cannot create file") }
mut fr := os.open(fname) or { panic("cannot open file") }
// Initialize lexer state: `state` value is -1, all offsets are at the end
// of buffer.
mut st := &State{
file: fr,
// Sentinel at `yylimit` offset is set to zero, which triggers YYFILL.
yyinput: []u8{len: bufsize + 1},
yycursor: bufsize,
yymarker: bufsize,
yylimit: bufsize,
token: bufsize,
yycond: .yycmedia_type,
yystate: -1,
trie: []MtagElem{},
/*!stags:re2c format = '\n\t\t@@: tag_none,'; */
/*!mtags:re2c format = '\n\t\t@@: mtag_root,'; */
l1: tag_none,
l2: tag_none,
f1: mtag_root,
f2: mtag_root,
p1: mtag_root,
p2: mtag_root,
p3: mtag_root,
p4: mtag_root,
yyaccept: 0,
}
// yyinput is zero-initialized, no need to write sentinel
// Main loop. The buffer contains incomplete data which appears packet by
// packet. When the lexer needs more input it saves its internal state and
// returns to the caller which should provide more input and resume lexing.
mut status := Status.lex_ready
mut send := 0
for {
status = lex(mut st)
if status == .lex_end {
break
} else if status == .lex_waiting {
if send < packets.len {
log.debug("sending packet $send")
fw.write_string(packets[send]) or { panic("cannot write to file") }
fw.flush()
send += 1
}
status = fill(mut st)
log.debug("filled buffer $st.yyinput, status $status")
if status != .lex_ready {
break
}
} else if status == .lex_bad_packet {
break
}
}
// Check results.
if status != expect {
panic("expected $expect, got $status")
}
// Cleanup: remove input file.
fr.close()
fw.close()
os.rm(fname) or { panic("cannot remove file") }
}
fn main() {
//log.set_level(.debug)
test(.lex_end, ["ap", "plication/j", "son;", " charset=\"", "utf\\\"-8\"\r", "\n", ""])
}
|