1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
|
.\" Man page generated from reStructuredText.
.
.
.nr rst2man-indent-level 0
.
.de1 rstReportMargin
\\$1 \\n[an-margin]
level \\n[rst2man-indent-level]
level margin: \\n[rst2man-indent\\n[rst2man-indent-level]]
-
\\n[rst2man-indent0]
\\n[rst2man-indent1]
\\n[rst2man-indent2]
..
.de1 INDENT
.\" .rstReportMargin pre:
. RS \\$1
. nr rst2man-indent\\n[rst2man-indent-level] \\n[an-margin]
. nr rst2man-indent-level +1
.\" .rstReportMargin post:
..
.de UNINDENT
. RE
.\" indent \\n[an-margin]
.\" old: \\n[rst2man-indent\\n[rst2man-indent-level]]
.nr rst2man-indent-level -1
.\" new: \\n[rst2man-indent\\n[rst2man-indent-level]]
.in \\n[rst2man-indent\\n[rst2man-indent-level]]u
..
.TH "RE2JAVA" 1 "" "" ""
.SH NAME
re2java \- generate fast lexical analyzers for Java
.SH SYNOPSIS
.sp
re2java \fB[ OPTIONS ]\fP \fB[ WARNINGS ]\fP \fBINPUT\fP
.sp
Input can be either a file or \fB\-\fP for stdin.
.SH INTRODUCTION
.sp
re2java works as a preprocessor. It reads the input file (which is usually a
program in Java, but can be anything) and looks for blocks of code
enclosed in special\-form start/end markers. The text outside of these blocks is
copied verbatim into the output file. The contents of the blocks are processed
by re2java\&. It translates them to code in Java and outputs the generated
code in place of the block.
.sp
Here is an example of a small program that checks if a given string contains a
decimal number:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Main {
static boolean lex(String yyinput) {
int yycursor = 0;
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
[1\-9][0\-9]* { return true; }
* { return false; }
*/
}
public static void main(String []args) {
assert lex(\(dq1234\e0\(dq);
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
In the output re2java replaced the block in the middle with the generated code:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// Generated by re2java
// re2java $INPUT \-o $OUTPUT
class Main {
static boolean lex(String yyinput) {
int yycursor = 0;
{
char yych = 0;
int yystate = 0;
yyl: while (true) {
switch (yystate) {
case 0:
yych = yyinput.charAt(yycursor);
yycursor += 1;
switch (yych) {
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
yystate = 2;
continue yyl;
default:
yystate = 1;
continue yyl;
}
case 1:
{ return false; }
case 2:
yych = yyinput.charAt(yycursor);
switch (yych) {
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
yycursor += 1;
yystate = 2;
continue yyl;
default:
yystate = 3;
continue yyl;
}
case 3:
{ return true; }
default:
throw new IllegalStateException(\(dqinternal lexer error\(dq);
}
}
}
}
public static void main(String []args) {
assert lex(\(dq1234\e0\(dq);
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SH BASICS
.sp
A re2java program consists of a sequence of \fIblocks\fP intermixed with code in the
target language. A block may contain \fIdefinitions\fP, \fIconfigurations\fP, \fIrules\fP,
\fIactions\fP and \fIdirectives\fP in any order:
.INDENT 0.0
.TP
.B \fBname = regular\-expression ;\fP
A \fIdefinition\fP binds \fBname\fP to \fBregular\-expression\fP\&. Names may contain
alphanumeric characters and underscore. The \fI\%regular expressions\fP section
gives an overview of re2java syntax for regular expressions. Once defined,
the \fBname\fP can be used in other regular expressions and in rules.
Recursion in named definitions is not allowed, and each name should be
defined before it is used. A block inherits named definitions from the
global scope. Redefining a name that exists in the current scope is an error.
.TP
.B \fBconfiguration = value ;\fP
A \fIconfiguration\fP allows one to change re2java behavior and customize the
generated code. For a full list of configurations supported by re2java see
the \fI\%configurations\fP section. Depending on a particular configuration, the
\fBvalue\fP can be a keyword, a nonnegative integer number or a one\-line string
which should be enclosed in double or single quotes unless it consists of
alphanumeric characters. A block inherits configurations from the global
scope and may redefine them or add new ones. Configurations defined inside
of a block affect the whole block, even if they appear at the end of it.
.TP
.B \fBregular\-expression code\fP
A \fIrule\fP binds \fBregular\-expression\fP to its semantic action (a block of
code in curly braces, or a block of code that starts with \fB:=\fP and ends on
a newline followed by any non\-whitespace character).
If the \fBregular\-expression\fP matches, the associated \fBcode\fP is executed.
If multiple rules match, the longest match takes precedence. If multiple
rules match the same string, the earliest one takes precedence. There are
two special rules: the default rule \fB*\fP and the end of input rule \fB$\fP\&.
Default rule should always be defined, it has the lowest priority regardless
of its place in the block, and it matches any code unit (not necessarily a
valid character, see the \fI\%encoding support\fP section). The end of input rule
should be defined if the corresponding method for
\fI\%handling the end of input\fP is used.
With \fI\%start conditions\fP rules have more complex syntax.
.TP
.B \fB!action code\fP
An \fIaction\fP binds a user\-defined block of \fBcode\fP to a particular place in
the generated finite state machine (in the same way as semantic actions bind
code to the final states). See the \fI\%actions\fP section for a full list of
predefined actions.
.TP
.B \fB!directive ;\fP
A \fIdirective\fP is one of the special predefined statements. Each directive
has a unique purpose. See the \fI\%directives\fP section for details.
.UNINDENT
.SS Blocks
.sp
Block start and end markers are either \fB/*!re2c\fP and \fB*/\fP, or \fB%{\fP and
\fB%}\fP (both styles are supported). Starting from version 2.2 blocks may have
optional names that allow them to be referenced in other blocks.
There are different kinds of blocks:
.INDENT 0.0
.TP
.B \fB/*!re2c[:<name>] ... */\fP or \fB%{[:<name>] ... %}\fP
A \fIglobal block\fP contains definitions, configurations, rules and directives.
re2java compiles regular expressions associated with each rule into a
deterministic finite automaton, encodes it in the form of conditional jumps
in the target language and replaces the block with the generated code. Names
and configurations defined in a global block are added to the global scope
and become visible to subsequent blocks. At the start of the program the
global scope is initialized with command\-line \fI\%options\fP\&.
.TP
.B \fB/*!local:re2c[:<name>] ... */\fP or \fB%{local[:<name>] ... %}\fP
A \fIlocal block\fP is like a global block, but the names and configurations in
it have local scope (they do not affect other blocks).
.TP
.B \fB/*!rules:re2c[:<name>] ... */\fP or \fB%{rules[:<name>] ... %}\fP
A \fIrules block\fP is like a local block, but it does not generate any code by
itself, nor does it add any definitions to the global scope \-\- it is meant
to be reused in other blocks. This is a way of sharing code (more details in
the \fI\%reusable blocks\fP section). Prior to re2java version 2.2 rules blocks
required \fB\-r \-\-reusable\fP option.
.TP
.B \fB/*!use:re2c[:<name>] ... */\fP or \fB%{use[:<name>] ... %}\fP
A use block that references a previously defined rules block. If the name is
specified, re2java looks for a rules blocks with this name. Otherwise the most
recent rules block is used (either a named or an unnamed one). A use block
can add definitions, configurations and rules of its own, which are added to
those of the referenced rules block. Prior to re2java version 2.2 use blocks
required \fB\-r \-\-reusable\fP option.
.TP
.B \fB/*!max:re2c[:<name1>[:<name2>...]] ... */\fP or \fB%{max[:<name1>[:<name2>...]] ... %}\fP
A block that generates \fBYYMAXFILL\fP definition. An optional list of block
names specifies which blocks should be included when computing \fBYYMAXFILL\fP
value (if the list is empty, all blocks are included).
By default the generated code is a macro\-definition for C
(\fB#define YYMAXFILL <n>\fP), or a global variable for Go
(\fBvar YYMAXFILL int = <n>\fP). It can be customized with an optional
configuration \fBformat\fP that specifies a template string where \fB@@{max}\fP
(or \fB@@\fP for short) is replaced with the numeric value of \fBYYMAXFILL\fP\&.
.TP
.B \fB/*!maxnmatch:re2c[:<name1>[:<name2>...]] ... */\fP or \fB%{maxnmatch[:<name1>[:<name2>...]] ... %}\fP
A block that generates \fBYYMAXNMATCH\fP definition (it requires
\fB\-P \-\-posix\-captures\fP option). An optional list of block names specifies
which blocks should be included when computing \fBYYMAXNMATCH\fP value (if the
list is empty, all blocks are included).
By default the generated code is a macro\-definition for C
(\fB#define YYMAXNMATCH <n>\fP), or a global variable for Go
(\fBvar YYMAXNMATCH int = <n>\fP). It can be customized with an optional
configuration \fBformat\fP that specifies a template string where \fB@@{max}\fP
(or \fB@@\fP for short) is replaced with the numeric value of \fBYYMAXNMATCH\fP\&.
.TP
.B \fB/*!stags:re2c[:<name1>[:<name2>...]] ... */\fP, \fB/*!mtags:re2c[:<name1>[:<name2>...]] ... */\fP or \fB%{stags[:<name1>[:<name2>...]] ... %}\fP, \fB%{mtags[:<name1>[:<name2>...]] ... %{\fP
Blocks that specify a template piece of code that is expanded for each
s\-tag/m\-tag variable generated by re2java\&. An optional list of block names
specifies which blocks should be included when computing the set of tag
variables (if the list is empty, all blocks are included).
There are two optional configurations: \fBformat\fP and \fBseparator\fP\&.
Configuration \fBformat\fP specifies a template string where \fB@@{tag}\fP (or
\fB@@\fP for short) is replaced with the name of each tag variable.
Configuration \fBseparator\fP specifies a piece of code used to join the
generated \fBformat\fP pieces for different tag variables.
.TP
.B \fB/*!svars:re2c[:<name1>[:<name2>...]] ... */\fP, \fB/*!mvars:re2c[:<name1>[:<name2>...]] ... */\fP or \fB%{svars[:<name1>[:<name2>...]] ... %}\fP, \fB%{mvars[:<name1>[:<name2>...]] ... %{\fP
Blocks that specify a template piece of code that is expanded for each
s\-tag/m\-tag that is either explicitly mentioned by the rules (with
\fB\-\-tags\fP option) or implicitly generated by re2java (with \fB\-\-captvars\fP or
\fB\-\-posix\-captvars\fP options). An optional list of block names specifies
which blocks should be included when computing the set of tags (if the list
is empty, all blocks are included).
There are two optional configurations: \fBformat\fP and \fBseparator\fP\&.
Configuration \fBformat\fP specifies a template string where \fB@@{tag}\fP (or
\fB@@\fP for short) is replaced with the name of each tag.
Configuration \fBseparator\fP specifies a piece of code used to join the
generated \fBformat\fP pieces for different tags.
.TP
.B \fB/*!getstate:re2c[:<name1>[:<name2>...]] ... */\fP or \fB%{getstate[:<name1>[:<name2>...]] ... %}\fP
A block that generates conditional dispatch on the lexer state (it requires
\fB\-\-storable\-state\fP option). An optional list of block names specifies
which blocks should be included in the state dispatch. The default
transition goes to the start label of the first block on the list. If the
list is empty, all blocks are included, and the default transition goes to
the first block in the file that has a start label.
This block type is incompatible with the \fB\-\-loop\-switch\fP option, as it
requires cross\-block transitions that are unsupported without \fBgoto\fP or
function calls.
.TP
.B \fB/*!conditions:re2c[:<name1>[:<name2>...]] ... */\fP, \fB/*!types:re2c... */\fP or \fB%{conditions[:<name1>[:<name2>...]] ... %}\fP, \fB%{types... %}\fP
A block that generates condition enumeration (it requires \fB\-\-conditions\fP
option). An optional list of block names specifies which blocks should be
included when computing the set of conditions (if the list is empty, all
blocks are included).
By default the generated code is an enumeration \fBYYCONDTYPE\fP\&. It can be
customized with optional configurations \fBformat\fP and \fBseparator\fP\&.
Configuration \fBformat\fP specifies a template string where \fB@@{cond}\fP (or
\fB@@\fP for short) is replaced with the name of each condition, and
\fB@@{num}\fP is replaced with a numeric index of that condition.
Configuration \fBseparator\fP specifies a piece of code used to join the
generated \fBformat\fP pieces for different conditions.
.TP
.B \fB/*!include:re2c <file> */\fP or \fB%{include <file> %}\fP
This block allows one to include \fB<file>\fP, which must be a double\-quoted
file path. The contents of the file are literally substituted in place of
the block, in the same way as \fB#include\fP works in C/C++. This block can be
used together with the \fB\-\-depfile\fP option to generate build system
dependencies on the included files.
.TP
.B \fB/*!header:re2c:on*/\fP or \fB%{header:on %}\fP
This block marks the start of header file. Everything after it and up to the
following \fBheader:off\fP block is processed by re2java and written to the
header file specified with \fB\-t \-\-type\-header\fP option.
.TP
.B \fB/*!header:re2c:off*/\fP or \fB%{header:off %}\fP
This block marks the end of header file started with \fBheader:on*/\fP block.
.TP
.B \fB/*!ignore:re2c ... */\fP or \fB%{ignore ... %}\fP
A block which contents are ignored and removed from the output file.
.UNINDENT
.SS Configurations
.sp
Here is a full list of configurations supported by re2java:
.INDENT 0.0
.TP
.B \fBre2c:api\fP, \fBre2c:input\fP
Same as the \fB\-\-api\fP option.
.TP
.B \fBre2c:api:sigil\fP
Specify the marker (\(dqsigil\(dq) that is used for argument placeholders in the
API primitives. The default is \fB@@\fP\&. A placeholder starts with sigil
followed by the argument name in curly braces. For example, if sigil is set
to \fB$\fP, then placeholders will have the form \fB${name}\fP\&. Single\-argument
APIs may use shorthand notation without the name in braces. This option can
be overridden by options for individual API primitives, e.g.
\fBre2c:YYFILL@len\fP for \fBYYFILL\fP\&.
.TP
.B \fBre2c:api:style\fP
Specify API style. Possible values are \fBfunctions\fP (the default for C) and
\fBfree\-form\fP (the default for Go and Rust).
In \fBfunctions\fP style API primitives are generated with an argument list in
parentheses following the name of the primitive. The arguments are provided
only for autogenerated parameters (such as the number of characters passed
to \fBYYFILL\fP), but not for the general lexer context, so the primitives
behave more like macros in C/C++ or closures in Go and Rust.
In free\-form style API primitives do not have a fixed form: they should be
defined as strings containing free\-form pieces of code with interpolated
variables of the form \fB@@{var}\fP or \fB@@\fP (they correspond to arguments in
function\-like style).
This configuration may be overridden for individual API primitives, see for
example \fBre2c:YYFILL:naked\fP configuration for \fBYYFILL\fP\&.
.TP
.B \fBre2c:bit\-vectors\fP, \fBre2c:flags:bit\-vectors\fP, \fBre2c:flags:b\fP
Same as the \fB\-\-bit\-vectors\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:captures\fP, \fBre2c:leftmost\-captures\fP
Same as the \fB\-\-leftmost\-captures\fP option, but can be configured on
per\-block basis.
.TP
.B \fBre2c:captvars\fP, \fBre2c:leftmost\-captvars\fP
Same as the \fB\-\-leftmost\-captvars\fP option, but can be configured on
per\-block basis.
.TP
.B \fBre2c:case\-insensitive\fP, \fBre2c:flags:case\-insensitive\fP
Same as the \fB\-\-case\-insensitive\fP option, but can be configured on
per\-block basis.
.TP
.B \fBre2c:case\-inverted\fP, \fBre2c:flags:case\-inverted\fP
Same as the \fB\-\-case\-inverted\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:case\-ranges\fP, \fBre2c:flags:case\-ranges\fP
Same as the \fB\-\-case\-ranges\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:computed\-gotos\fP, \fBre2c:flags:computed\-gotos\fP, \fBre2c:flags:g\fP
Same as the \fB\-\-computed\-gotos\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:computed\-gotos:relative\fP, \fBre2c:cgoto:relative\fP
Same as the \fB\-\-computed\-gotos\-relative\fP option, but can be configured on
per\-block basis.
.TP
.B \fBre2c:computed\-gotos:threshold\fP, \fBre2c:cgoto:threshold\fP
If computed \fBgoto\fP is used, this configuration specifies the complexity
threshold that triggers the generation of jump tables instead of nested
\fBif\fP statements and bitmaps. The default value is \fB9\fP\&.
.TP
.B \fBre2c:cond:abort\fP
If set to a positive integer value, the default case in the generated
condition dispatch aborts program execution.
.TP
.B \fBre2c:cond:goto\fP
Specifies a piece of code used for the autogenerated shortcut rules \fB:=>\fP
in conditions. The default is \fBgoto @@;\fP\&.
The \fB@@\fP placeholder is substituted with condition name (see
configurations \fBre2c:api:sigil\fP and \fBre2c:cond:goto@cond\fP).
.TP
.B \fBre2c:cond:goto@cond\fP
Specifies the sigil used for argument substitution in \fBre2c:cond:goto\fP
definition. The default value is \fB@@\fP\&.
Overrides the more generic \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:cond:divider\fP
Defines the divider for condition blocks.
The default value is \fB/* *********************************** */\fP\&.
Placeholders are substituted with condition name (see \fBre2c:api;sigil\fP and
\fBre2c:cond:divider@cond\fP).
.TP
.B \fBre2c:cond:divider@cond\fP
Specifies the sigil used for argument substitution in \fBre2c:cond:divider\fP
definition. The default is \fB@@\fP\&.
Overrides the more generic \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:cond:prefix\fP, \fBre2c:condprefix\fP
Specifies the prefix used for condition labels.
The default is \fByyc_\fP\&.
.TP
.B \fBre2c:cond:enumprefix\fP, \fBre2c:condenumprefix\fP
Specifies the prefix used for condition identifiers.
The default is \fByyc\fP\&.
.TP
.B \fBre2c:debug\-output\fP, \fBre2c:flags:debug\-output\fP, \fBre2c:flags:d\fP
Same as the \fB\-\-debug\-output\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:empty\-class\fP, \fBre2c:flags:empty\-class\fP
Same as the \fB\-\-empty\-class\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:encoding:ebcdic\fP, \fBre2c:flags:ecb\fP, \fBre2c:flags:e\fP
Same as the \fB\-\-ebcdic\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:encoding:ucs2\fP, \fBre2c:flags:wide\-chars\fP, \fBre2c:flags:w\fP
Same as the \fB\-\-ucs2\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:encoding:utf8\fP, \fBre2c:flags:utf\-8\fP, \fBre2c:flags:8\fP
Same as the \fB\-\-utf8\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:encoding:utf16\fP, \fBre2c:flags:utf\-16\fP, \fBre2c:flags:x\fP
Same as the \fB\-\-utf16\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:encoding:utf32\fP, \fBre2c:flags:unicode\fP, \fBre2c:flags:u\fP
Same as the \fB\-\-utf32\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:encoding\-policy\fP, \fBre2c:flags:encoding\-policy\fP
Same as the \fB\-\-encoding\-policy\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:eof\fP
Specifies the sentinel symbol used with the end\-of\-input rule \fB$\fP\&. The
default value is \fB\-1\fP (\fB$\fP rule is not used). Other possible values
include all valid code units. Only decimal numbers are recognized.
.TP
.B \fBre2c:header\fP, \fBre2c:flags:type\-header\fP, \fBre2c:flags:t\fP
Specifies the name of the generated header file relative to the directory of
the output file. Same as the \fB\-\-header\fP option except that the file path
is relative.
.TP
.B \fBre2c:indent:string\fP
Specifies the string used for indentation. The default is a single tab
character \fB\(dq\et\(dq\fP\&. Indent string should contain whitespace characters only.
To disable indentation entirely, set this configuration to an empty string.
.TP
.B \fBre2c:indent:top\fP
Specifies the minimum amount of indentation to use. The default value is
zero. The value should be a non\-negative integer number.
.TP
.B \fBre2c:invert\-captures\fP
Same as the \fB\-\-invert\-captures\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:label:prefix\fP, \fBre2c:labelprefix\fP
Specifies the prefix used for DFA state labels. The default is \fByy\fP\&.
.TP
.B \fBre2c:label:start\fP, \fBre2c:startlabel\fP
Controls the generation of a block start label. The default value is zero,
which means that the start label is generated only if it is used. An integer
value greater than zero forces the generation of start label even if it is
unused by the lexer. A string value also forces start label generation and
sets the label name to the specified string. This configuration applies only
to the current block (it is reset to default for the next block).
.TP
.B \fBre2c:label:yyFillLabel\fP
Specifies the prefix of \fBYYFILL\fP labels used with \fBre2c:eof\fP and in
storable state mode.
.TP
.B \fBre2c:label:yyloop\fP
Specifies the name of the label marking the start of the lexer loop with
\fB\-\-loop\-switch\fP option. The default is \fByyloop\fP\&.
.TP
.B \fBre2c:label:yyNext\fP
Specifies the name of the optional label that follows \fBYYGETSTATE\fP switch
in storable state mode (enabled with \fBre2c:state:nextlabel\fP). The default
is \fByyNext\fP\&.
.TP
.B \fBre2c:lookahead\fP, \fBre2c:flags:lookahead\fP
Deprecated (see the deprecated \fB\-\-no\-lookahead\fP option).
.TP
.B \fBre2c:monadic\fP
If set to non\-zero, the generated lexer will use monadic notation (this
configuration is specific to Haskell).
.TP
.B \fBre2c:nested\-ifs\fP, \fBre2c:flags:nested\-ifs\fP, \fBre2c:flags:s\fP
Same as the \fB\-\-nested\-ifs\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:posix\-captures\fP, \fBre2c:flags:posix\-captures\fP, \fBre2c:flags:P\fP
Same as the \fB\-\-posix\-captures\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:posix\-captvars\fP
Same as the \fB\-\-posix\-captvars\fP option, but can be configured on per\-block
basis.
.TP
.B \fBre2c:tags\fP, \fBre2c:flags:tags\fP, \fBre2c:flags:T\fP
Same as the \fB\-\-tags\fP option, but can be configured on per\-block basis.
.TP
.B \fBre2c:tags:expression\fP
Specifies the expression used for tag variables.
By default re2java generates expressions of the form \fByyt<N>\fP\&. This might
be inconvenient, for example if tag variables are defined as fields in a
struct. All occurrences of \fB@@{tag}\fP or \fB@@\fP are replaced with the
actual tag name. For example, \fBre2c:tags:expression = \(dqs.@@\(dq;\fP results
in expressions of the form \fBs.yyt<N>\fP in the generated code.
See also \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:tags:negative\fP
Specifies the constant expression that is used for negative tag value
(typically this would be \fB\-1\fP if tags are integer offsets in the input
string, or null pointer if they are pointers).
.TP
.B \fBre2c:tags:prefix\fP
Specifies the prefix for tag variable names. The default is \fByyt\fP\&.
.TP
.B \fBre2c:sentinel\fP
Specifies the sentinel symbol used for the end\-of\-input checks (when bounds
checks are disabled with \fBre2c:yyfill:enable = 0;\fP and \fBre2c:eof\fP is not
set). This configuration does not affect code generation: its purpose is to
verify that the sentinel is not allowed in the middle of a rule, and ensure
that the lexer won\(aqt read past the end of buffer. The default value is
\fI\-1\(ga\fP (in that case re2java assumes that the sentinel is zero, which is the
most common case). Only decimal numbers are recognized.
.TP
.B \fBre2c:state:abort\fP
If set to a positive integer value, the default case in the generated
state dispatch aborts program execution, and an explicit \fB\-1\fP case
contains transition to the start of the block.
.TP
.B \fBre2c:state:nextlabel\fP
Controls if the \fBYYGETSTATE\fP switch is followed by an \fByyNext\fP label
(the default value is zero, which corresponds to no label).
Alternatively one can use \fBre2c:label:start\fP to generate a specific start
label, or an explicit \fBgetstate\fP block to generate the \fBYYGETSTATE\fP
switch separately from the lexer block.
.TP
.B \fBre2c:unsafe\fP, \fBre2c:flags:unsafe\fP
Same as the \fB\-\-no\-unsafe\fP option, but can be configured on per\-block
basis.
If set to zero, it suppresses the generation of \fBunsafe\fP wrappers around
\fBYYPEEK\fP\&. The default is non\-zero (wrappers are generated).
This configuration is specific to Rust.
.TP
.B \fBre2c:YYBACKUP\fP, \fBre2c:define:YYBACKUP\fP
Defines generic API primitive \fBYYBACKUP\fP\&.
.TP
.B \fBre2c:YYBACKUPCTX\fP, \fBre2c:define:YYBACKUPCTX\fP
Defines generic API primitive \fBYYBACKUPCTX\fP\&.
.TP
.B \fBre2c:YYCONDTYPE\fP, \fBre2c:define:YYCONDTYPE\fP
Defines API primitive \fBYYCONDTYPE\fP\&.
.TP
.B \fBre2c:YYCTYPE\fP, \fBre2c:define:YYCTYPE\fP
Defines API primitive \fBYYCTYPE\fP\&.
.TP
.B \fBre2c:YYCTXMARKER\fP, \fBre2c:define:YYCTXMARKER\fP
Defines API primitive \fBYYCTXMARKER\fP\&.
.TP
.B \fBre2c:YYCURSOR\fP, \fBre2c:define:YYCURSOR\fP
Defines API primitive \fBYYCURSOR\fP\&.
.TP
.B \fBre2c:YYDEBUG\fP, \fBre2c:define:YYDEBUG\fP
Defines API primitive \fBYYDEBUG\fP\&.
.TP
.B \fBre2c:YYFILL\fP, \fBre2c:define:YYFILL\fP
Defines API primitive \fBYYFILL\fP\&.
.TP
.B \fBre2c:YYFILL@len\fP, \fBre2c:define:YYFILL@len\fP
Specifies the sigil used for argument substitution in \fBYYFILL\fP
definition. Defaults to \fB@@\fP\&.
Overrides the more generic \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:YYFILL:naked\fP, \fBre2c:define:YYFILL:naked\fP
Overrides the more generic \fBre2c:api:style\fP configuration for \fBYYFILL\fP\&.
Zero value corresponds to free\-form API style.
.TP
.B \fBre2c:YYFN\fP
Defines API primitive \fBYYFN\fP\&.
.TP
.B \fBre2c:YYINPUT\fP
Defines API primitive \fBYYINPUT\fP\&.
.TP
.B \fBre2c:YYGETCOND\fP, \fBre2c:define:YYGETCONDITION\fP
Defines API primitive \fBYYGETCOND\fP\&.
.TP
.B \fBre2c:YYGETCOND:naked\fP, \fBre2c:define:YYGETCONDITION:naked\fP
Overrides the more generic \fBre2c:api:style\fP configuration for
\fBYYGETCOND\fP\&. Zero value corresponds to free\-form API style.
.TP
.B \fBre2c:YYGETSTATE\fP, \fBre2c:define:YYGETSTATE\fP
Defines API primitive \fBYYGETSTATE\fP\&.
.TP
.B \fBre2c:YYGETSTATE:naked\fP, \fBre2c:define:YYGETSTATE:naked\fP
Overrides the more generic \fBre2c:api:style\fP configuration for
\fBYYGETSTATE\fP\&. Zero value corresponds to free\-form API style.
.TP
.B \fBre2c:YYGETACCEPT\fP, \fBre2c:define:YYGETACCEPT\fP
Defines API primitive \fBYYGETACCEPT\fP\&.
.TP
.B \fBre2c:YYLESSTHAN\fP, \fBre2c:define:YYLESSTHAN\fP
Defines generic API primitive \fBYYLESSTHAN\fP\&.
.TP
.B \fBre2c:YYLIMIT\fP, \fBre2c:define:YYLIMIT\fP
Defines API primitive \fBYYLIMIT\fP\&.
.TP
.B \fBre2c:YYMARKER\fP, \fBre2c:define:YYMARKER\fP
Defines API primitive \fBYYMARKER\fP\&.
.TP
.B \fBre2c:YYMTAGN\fP, \fBre2c:define:YYMTAGN\fP
Defines generic API primitive \fBYYMTAGN\fP\&.
.TP
.B \fBre2c:YYMTAGP\fP, \fBre2c:define:YYMTAGP\fP
Defines generic API primitive \fBYYMTAGP\fP\&.
.TP
.B \fBre2c:YYPEEK\fP, \fBre2c:define:YYPEEK\fP
Defines generic API primitive \fBYYPEEK\fP\&.
.TP
.B \fBre2c:YYRESTORE\fP, \fBre2c:define:YYRESTORE\fP
Defines generic API primitive \fBYYRESTORE\fP\&.
.TP
.B \fBre2c:YYRESTORECTX\fP, \fBre2c:define:YYRESTORECTX\fP
Defines generic API primitive \fBYYRESTORECTX\fP\&.
.TP
.B \fBre2c:YYRESTORETAG\fP, \fBre2c:define:YYRESTORETAG\fP
Defines generic API primitive \fBYYRESTORETAG\fP\&.
.TP
.B \fBre2c:YYSETCOND\fP, \fBre2c:define:YYSETCONDITION\fP
Defines API primitive \fBYYSETCOND\fP\&.
.TP
.B \fBre2c:YYSETCOND@cond\fP, \fBre2c:define:YYSETCONDITION@cond\fP
Specifies the sigil used for argument substitution in \fBYYSETCOND\fP
definition. The default value is \fB@@\fP\&.
Overrides the more generic \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:YYSETCOND:naked\fP, \fBre2c:define:YYSETCONDITION:naked\fP
Overrides the more generic \fBre2c:api:style\fP configuration for
\fBYYSETCOND\fP\&. Zero value corresponds to free\-form API style.
.TP
.B \fBre2c:YYSETSTATE\fP, \fBre2c:define:YYSETSTATE\fP
Defines API primitive \fBYYSETSTATE\fP\&.
.TP
.B \fBre2c:YYSETSTATE@state\fP, \fBre2c:define:YYSETSTATE@state\fP
Specifies the sigil used for argument substitution in \fBYYSETSTATE\fP
definition. The default value is \fB@@\fP\&.
Overrides the more generic \fBre2c:api:sigil\fP configuration.
.TP
.B \fBre2c:YYSETSTATE:naked\fP, \fBre2c:define:YYSETSTATE:naked\fP
Overrides the more generic \fBre2c:api:style\fP configuration for
\fBYYSETSTATE\fP\&. Zero value corresponds to free\-form API style.
.TP
.B \fBre2c:YYSETACCEPT\fP, \fBre2c:define:YYSETACCEPT\fP
Defines API primitive \fBYYSETACCEPT\fP\&.
.TP
.B \fBre2c:YYSKIP\fP, \fBre2c:define:YYSKIP\fP
Defines generic API primitive \fBYYSKIP\fP\&.
.TP
.B \fBre2c:YYSHIFT\fP, \fBre2c:define:YYSHIFT\fP
Defines generic API primitive \fBYYSHIFT\fP\&.
.TP
.B \fBre2c:YYCOPYMTAG\fP, \fBre2c:define:YYCOPYMTAG\fP
Defines generic API primitive \fBYYCOPYMTAG\fP\&.
.TP
.B \fBre2c:YYCOPYSTAG\fP, \fBre2c:define:YYCOPYSTAG\fP
Defines generic API primitive \fBYYCOPYSTAG\fP\&.
.TP
.B \fBre2c:YYSHIFTMTAG\fP, \fBre2c:define:YYSHIFTMTAG\fP
Defines generic API primitive \fBYYSHIFTMTAG\fP\&.
.TP
.B \fBre2c:YYSHIFTSTAG\fP, \fBre2c:define:YYSHIFTSTAG\fP
Defines generic API primitive \fBYYSHIFTSTAG\fP\&.
.TP
.B \fBre2c:YYSTAGN\fP, \fBre2c:define:YYSTAGN\fP
Defines generic API primitive \fBYYSTAGN\fP\&.
.TP
.B \fBre2c:YYSTAGP\fP, \fBre2c:define:YYSTAGP\fP
Defines generic API primitive \fBYYSTAGP\fP\&.
.TP
.B \fBre2c:yyaccept\fP, \fBre2c:variable:yyaccept\fP
Defines API primitive \fByyaccept\fP\&.
.TP
.B \fBre2c:yybm\fP, \fBre2c:variable:yybm\fP
Defines API primitive \fByybm\fP\&.
.TP
.B \fBre2c:yybm:hex\fP, \fBre2c:variable:yybm:hex\fP
If set to nonzero, bitmaps for the \fB\-\-bit\-vectors\fP option are generated
in hexadecimal format. The default is zero (bitmaps are in decimal format).
.TP
.B \fBre2c:yych\fP, \fBre2c:variable:yych\fP
Defines API primitive \fByych\fP\&.
.TP
.B \fBre2c:yych:emit\fP, \fBre2c:variable:yych:emit\fP
If set to zero, \fByych\fP definition is not generated.
The default is non\-zero.
.TP
.B \fBre2c:yych:conversion\fP, \fBre2c:variable:yych:conversion\fP
If set to non\-zero, re2java automatically generates a conversion to \fBYYCTYPE\fP
every time \fByych\fP is read. The default is to zero (no conversion).
.TP
.B \fBre2c:yych:literals\fP, \fBre2c:variable:yych:literals\fP
Specifies the form of literals that \fByych\fP is matched against. Possible
values are: \fBchar\fP (character literals in single quotes, non\-printable
ones use escape sequences that start with backslash), \fBhex\fP (hexadecimal
integers) and \fBchar_or_hex\fP (a mixture of both, character literals for
printable characters and hexadecimal integers for others).
.TP
.B \fBre2c:yyctable\fP, \fBre2c:variable:yyctable\fP
Defines API primitive \fByyctable\fP\&.
.TP
.B \fBre2c:yynmatch\fP, \fBre2c:variable:yynmatch\fP
Defines API primitive \fByynmatch\fP\&.
.TP
.B \fBre2c:yypmatch\fP, \fBre2c:variable:yypmatch\fP
Defines API primitive \fByypmatch\fP\&.
.TP
.B \fBre2c:yytarget\fP, \fBre2c:variable:yytarget\fP
Defines API primitive \fByytarget\fP\&.
.TP
.B \fBre2c:yystable\fP, \fBre2c:variable:yystable\fP
Deprecated.
.TP
.B \fBre2c:yystate\fP, \fBre2c:variable:yystate\fP
Defines API primitive \fByystate\fP\&.
.TP
.B \fBre2c:yyfill\fP, \fBre2c:variable:yyfill\fP
Defines API primitive \fByyfill\fP\&.
.TP
.B \fBre2c:yyfill:check\fP
If set to zero, suppresses the generation of pre\-\fBYYFILL\fP check for the
number of input characters (the \fBYYLESSTHAN\fP definition in generic API and
the \fBYYLIMIT\fP\-based comparison in C pointer API). The default is non\-zero
(generate the check).
.TP
.B \fBre2c:yyfill:enable\fP
If set to zero, suppresses the generation of \fBYYFILL\fP (together
with the check). This should be used when the whole input fits into one piece
of memory (there is no need for buffering) and the end\-of\-input checks do not
rely on the \fBYYFILL\fP checks (e.g. if a sentinel character is used).
Use warnings (\fB\-W\fP option) and \fBre2c:sentinel\fP configuration to verify
that the generated lexer cannot read past the end of input.
The default is non\-zero (\fBYYFILL\fP is enabled).
.TP
.B \fBre2c:yyfill:parameter\fP
If set to zero, suppresses the generation of parameter passed to \fBYYFILL\fP\&.
The parameter is the minimum number of characters that must be supplied.
Defaults to non\-zero (the parameter is generated).
This configuration can be overridden with \fBre2c:YYFILL:naked\fP or
\fBre2c:api:style\fP\&.
.TP
.B \fBre2c:yyfn:sep\fP
Specifies separator used in \fBYYFN\fP elements (defaults to semicolon).
.TP
.B \fBre2c:yyfn:throw\fP
Specifies exceptions thrown by \fBYYFN\fP function (defaults to empty, which
means no exceptions).
.UNINDENT
.SS Regular expressions
.sp
re2java uses the following syntax for regular expressions:
.INDENT 0.0
.TP
.B \fB\(dqfoo\(dq\fP
Case\-sensitive string literal.
.TP
.B \fB\(aqfoo\(aq\fP
Case\-insensitive string literal.
.TP
.B \fB[a\-xyz]\fP, \fB[^a\-xyz]\fP
Character class (possibly negated).
.TP
.B \fB\&.\fP
Any character except newline.
.TP
.B \fBR \e S\fP
Difference of character classes \fBR\fP and \fBS\fP\&.
.TP
.B \fBR*\fP
Zero or more occurrences of \fBR\fP\&.
.TP
.B \fBR+\fP
One or more occurrences of \fBR\fP\&.
.TP
.B \fBR?\fP
Optional \fBR\fP\&.
.TP
.B \fBR{n}\fP
Repetition of \fBR\fP exactly \fBn\fP times.
.TP
.B \fBR{n,}\fP
Repetition of \fBR\fP at least \fBn\fP times.
.TP
.B \fBR{n,m}\fP
Repetition of \fBR\fP from \fBn\fP to \fBm\fP times.
.TP
.B \fB(R)\fP
Just \fBR\fP; parentheses are used to override precedence. If submatch
extraction is enabled, \fB(R)\fP is a capturing or a non\-capturing group
depending on \fB\-\-invert\-captures\fP option.
.TP
.B \fB(!R)\fP
If submatch extraction is enabled, \fB(!R)\fP is a non\-capturing or a
capturing group depending on \fB\-\-invert\-captures\fP option.
.TP
.B \fBR S\fP
Concatenation: \fBR\fP followed by \fBS\fP\&.
.TP
.B \fBR | S\fP
Alternative: \fBR or S\fP\&.
.TP
.B \fBR / S\fP
Lookahead: \fBR\fP followed by \fBS\fP, but \fBS\fP is not consumed.
.TP
.B \fBname\fP
Regular expression defined as \fBname\fP (or literal string \fB\(dqname\(dq\fP in
Flex compatibility mode).
.TP
.B \fB{name}\fP
Regular expression defined as \fBname\fP in Flex compatibility mode.
.TP
.B \fB@stag\fP
An \fIs\-tag\fP: saves the last input position at which \fB@stag\fP matches in a
variable named \fBstag\fP\&.
.TP
.B \fB#mtag\fP
An \fIm\-tag\fP: saves all input positions at which \fB#mtag\fP matches in a
variable named \fBmtag\fP\&.
.TP
.B \fB$\fP
End of input.
.UNINDENT
.sp
Character classes and string literals may contain the following escape
sequences: \fB\ea\fP, \fB\eb\fP, \fB\ef\fP, \fB\en\fP, \fB\er\fP, \fB\et\fP, \fB\ev\fP, \fB\e\e\fP,
octal escapes \fB\eooo\fP and hexadecimal escapes \fB\exhh\fP, \fB\euhhhh\fP and
\fB\eUhhhhhhhh\fP\&.
.SS Actions
.sp
Here is a list of predefined actions supported by re2java:
.INDENT 0.0
.TP
.B \fB!entry code\fP
Entry action binds a user\-defined block of \fBcode\fP to the start state of
the current finite state machine. If \fI\%start conditions\fP are used, the entry
action can be set individually for each condition. This action may be used
to perform initialization, e.g. to save start location of a lexeme.
.TP
.B \fB!pre_rule code\fP
Pre\-rule action prepends a user\-defined block of \fBcode\fP to semantic actions
of all rules in the current block (or condition, if \fI\%start conditions\fP are
used). This action may be used to factor out the common part of all semantic
actions (e.g. saving the end location of a lexeme).
.TP
.B \fB!post_rule code\fP
Post\-rule action appends a user\-defined block of \fBcode\fP to semantic actions
of all rules in the current block (or condition, if \fI\%start conditions\fP are
used). This action may be used to emit trap statements that guard against
unintended control flow.
.UNINDENT
.SS Directives
.sp
Here is a full list of directives supported by re2java:
.INDENT 0.0
.TP
.B \fB!use:name ;\fP
An in\-block use directive that merges a previously defined rules block with
the specified \fBname\fP into the current block. Named definitions, configurations
and rules of the referenced block are added to the current ones. Conflicts
between overlapping rules and configurations are resolved in the usual way:
the first rule takes priority, and the latest configuration overrides the
preceding ones. One exception is the special rules \fB*\fP, \fB$\fP and \fB<!>\fP
for which a block\-local definition always takes priority. A use directive
can be placed anywhere inside of a block, and multiple use directives are
allowed.
.TP
.B \fB!include file ;\fP
This directive is the same as \fBinclude\fP block: it inserts \fBfile\fP
contents verbatim in place of the directive.
.UNINDENT
.SS Program interface
.sp
The generated code interfaces with the outer program with the help of
\fIprimitives\fP, collectively referred to as the \fIAPI\fP\&.
Which primitives should be defined for a particular program depends on multiple
factors, including the complexity of regular expressions, input representation,
buffering and the use of various features. All the necessary primitives should
be defined by the user in the form of macros, functions, variables or any other
suitable form that makes the generated code syntactically and semantically
correct. re2java does not (and cannot) check the definitions, so if anything is
missing or defined incorrectly, the generated program may have compile\-time or
run\-time errors.
This manual provides examples of API definitions in the most common cases.
.sp
re2java has three API flavors that define the core set of primitives used by a
program:
.INDENT 0.0
.TP
.B \fBSimple API\fP
This is the default API for the Java backend. It consists of the following
primitives: \fBYYINPUT\fP (which should be defined as a sequence of code
units, e.g. a string) and \fBYYCURSOR\fP, \fBYYMARKER\fP, \fBYYCTXMARKER\fP,
\fBYYLIMIT\fP (which should be defined as indices in \fBYYINPUT\fP).
.nf
.fi
.sp
.TP
.B \fBRecord API\fP
Record API is useful in cases when lexer state must be stored in a class.
It is enabled with \fB\-\-api record\fP option or \fBre2c:api = record\fP
configuration. This API consists of a variable \fByyrecord\fP (the
name can be overridden with \fBre2c:yyrecord\fP) that should be
defined as a class with fields \fByyinput\fP, \fByycursor\fP, \fByymarker\fP,
\fByyctxmarker\fP, \fByylimit\fP (only the fields used by the generated code
need to be defined, and their names can be configured).
.nf
.fi
.sp
.TP
.B \fBGeneric API\fP
This is the most flexible API. It is enabled with \fB\-\-api generic\fP option
or \fBre2c:api = generic\fP configuration.
It contains primitives for generic operations:
\fBYYPEEK\fP,
\fBYYSKIP\fP,
\fBYYBACKUP\fP,
\fBYYBACKUPCTX\fP,
\fBYYSTAGP\fP,
\fBYYSTAGN\fP,
\fBYYMTAGP\fP,
\fBYYMTAGN\fP,
\fBYYRESTORE\fP,
\fBYYRESTORECTX\fP,
\fBYYRESTORETAG\fP,
\fBYYSHIFT\fP,
\fBYYSHIFTSTAG\fP,
\fBYYSHIFTMTAG\fP,
\fBYYLESSTHAN\fP,
\fBYYEND\fP\&.
.UNINDENT
.sp
Here is a full list of API primitives that may be used by the generated code in
order to interface with the outer program.
.INDENT 0.0
.TP
.B \fBYYCTYPE\fP
The type of the input characters (code units).
For ASCII, EBCDIC and UTF\-8 encodings it should be 1\-byte unsigned integer.
For UTF\-16 or UCS\-2 it should be 2\-byte unsigned integer. For UTF\-32 it
should be 4\-byte unsigned integer.
.TP
.B \fBYYCURSOR\fP
An l\-value that stores the current input position (a pointer or an integer
offset in \fBYYINPUT\fP). Initially \fBYYCURSOR\fP should point to the first
input character, and later it is advanced by the generated code. When a rule
matches, \fBYYCURSOR\fP position is the one after the last matched character.
.TP
.B \fBYYLIMIT\fP
An r\-value that stores the end of input position (a pointer or an integer
offset in \fBYYINPUT\fP). Initially \fBYYLIMIT\fP should point to the position
after the last available input character. It is not changed by the
generated code. The lexer compares \fBYYCURSOR\fP to \fBYYLIMIT\fP
in order to determine if there are enough input characters left.
.TP
.B \fBYYMARKER\fP
An l\-value that stores the position of the latest matched rule (a pointer or
an integer offset in \fBYYINPUT\fP). It is used to restore the \fBYYCURSOR\fP
position if the longer match fails and the lexer needs to rollback.
Initialization is not needed.
.TP
.B \fBYYCTXMARKER\fP
An l\-value that stores the position of the trailing context (a pointer or an
integer offset in \fBYYINPUT\fP). No initialization is needed. \fBYYCTXMARKER\fP
is needed only if the lookahead operator \fB/\fP is used.
.TP
.B \fBYYFILL\fP
A generic API primitive with one variable \fBlen\fP\&.
\fBYYFILL\fP should provide at least \fBlen\fP more input characters or fail.
If \fBre2c:eof\fP is used, then \fBlen\fP is always \fB1\fP and \fBYYFILL\fP should
always return to the calling function; zero return value indicates success.
If \fBre2c:eof\fP is not used, then \fBYYFILL\fP return value is ignored and it
should not return on failure. The maximum value of \fBlen\fP is \fBYYMAXFILL\fP\&.
.TP
.B \fBYYFN\fP
A primitive that defines function prototype in \fB\-\-recursive\-functions\fP
code model. Its value should be an array of one or more strings, where each
string contains two or three components separated by the string specified in
\fBre2c:fn:sep\fP configuration (typically a semicolon). The first array
element defines function name and return type (empty for a void function).
Subsequent elements define function arguments: first, the expression for the
argument used in function body (usually just a name); second, argument type;
third, an optional formal parameter (it defaults to the first component \-
usually both the argument and the parameter are the same identifier).
.TP
.B \fBYYINPUT\fP
An r\-value that stores the current input character sequence (string, buffer,
etc.).
.TP
.B \fBYYMAXFILL\fP
An integral constant equal to the maximum value of the argument to
\fBYYFILL\fP\&. It can be generated with a \fBmax\fP block.
.TP
.B \fBYYLESSTHAN\fP
A generic API primitive with one variable \fBlen\fP\&.
It should be defined as an r\-value of boolean type that equals \fBtrue\fP if
and only if there are less than \fBlen\fP input characters left.
.TP
.B \fBYYEND\fP
A generic API primitive with no variables.
It should be defined as an r\-value of boolean type that equals \fBtrue\fP if
and only if the \fIlogical\fP end of input has been reached (excluding any
padding or sentinel symbols). \fBYYEND\fP is used to implement \fB$\fP symbol in
regular expressions. It differs from \fBYYLESSTHAN\fP, which is used to ensure
that the lexer won\(aqt read past the end of buffer.
.TP
.B \fBYYPEEK\fP
A generic API primitive with no variables.
It should be defined as an r\-value of type \fBYYCTYPE\fP that is equal to the
character at the current input position.
.TP
.B \fBYYSKIP\fP
A generic API primitive that should advance the current input position by
one code unit.
.TP
.B \fBYYBACKUP\fP
A generic API primitive that should save the current input position (to be
restored with \fBYYRESTORE\fP later).
.TP
.B \fBYYRESTORE\fP
A generic API primitive that should restore the current input position to
the value saved by \fBYYBACKUP\fP\&.
.TP
.B \fBYYBACKUPCTX\fP
A generic API primitive that should save the current input position as the
position of the trailing context (to be restored with \fBYYRESTORECTX\fP
later).
.TP
.B \fBYYRESTORECTX\fP
A generic API primitive that should restore the trailing context position
saved with \fBYYBACKUPCTX\fP\&.
.TP
.B \fBYYRESTORETAG\fP
A generic API primitive with one variable \fBtag\fP that should restore the
trailing context position to the value of \fBtag\fP\&.
.TP
.B \fBYYSTAGP\fP
A generic API primitive with one variable \fBtag\fP, where \fBtag\fP can be a
pointer or an offset in \fBYYINPUT\fP (see submatch extraction section for
details). \fBYYSTAGP\fP should set \fBtag\fP to the current input position.
.TP
.B \fBYYSTAGN\fP
A generic API primitive with one variable \fBtag\fP, where \fBtag\fP can be a
pointer or an offset in \fBYYINPUT\fP (see submatch extraction section for
details). \fBYYSTAGN\fP should to set \fBtag\fP to a value that represents
non\-existent input position.
.TP
.B \fBYYMTAGP\fP
A generic API primitive with one variable \fBtag\fP\&.
\fBYYMTAGP\fP should append the current position to the submatch history of
\fBtag\fP (see the submatch extraction section for details.)
.TP
.B \fBYYMTAGN\fP
A generic API primitive with one variable \fBtag\fP\&.
\fBYYMTAGN\fP should append a value that represents non\-existent input
position position to the submatch history of \fBtag\fP (see the submatch
extraction section for details.)
.TP
.B \fBYYSHIFT\fP
A generic API primitive with one variable \fBshift\fP that should shift the
current input position by \fBshift\fP characters (the shift value may be
negative).
.TP
.B \fBYYCOPYSTAG\fP
A generic API primitive with two variables, \fBlhs\fP and \fBrhs\fP that should
copy right\-hand\-side s\-tag variable \fBrhs\fP to the left\-hand\-side s\-tag
variable \fBlhs\fP\&. For most languages this primitive has a default definition
that assigns \fBlhs\fP to \fBrhs\fP\&.
.TP
.B \fBYYCOPYMTAG\fP
A generic API primitive with two variables, \fBlhs\fP and \fBrhs\fP that should
copy right\-hand\-side m\-tag variable \fBrhs\fP to the left\-hand\-side m\-tag
variable \fBlhs\fP\&. For most languages this primitive has a default definition
that assigns \fBlhs\fP to \fBrhs\fP\&.
.TP
.B \fBYYSHIFTSTAG\fP
A generic API primitive with two variables, \fBtag\fP and \fBshift\fP that
should shift \fBtag\fP by \fBshift\fP code units (the shift value may be
negative).
.TP
.B \fBYYSHIFTMTAG\fP
A generic API primitive with two variables, \fBtag\fP and \fBshift\fP that
should shift the latest value in the history of \fBtag\fP by \fBshift\fP code
units (the shift value may be negative).
.TP
.B \fBYYMAXNMATCH\fP
An integral constant equal to the maximal number of POSIX capturing groups
in a rule. It is generated with a \fBmaxnmatch\fP block.
.TP
.B \fBYYCONDTYPE\fP
The type of the condition enum.
It can be generated either with \fBconditions\fP block or \fB\-\-header\fP option.
.TP
.B \fBYYGETACCEPT\fP
A primitive with one variable \fBvar\fP that stores numeric selector of the
accepted rule. For most languages this primitive has a default definition
that reads from \fBvar\fP\&.
.TP
.B \fBYYSETACCEPT\fP
A primitive with two variables: \fBvar\fP (an l\-value that stores numeric
selector of the accepted rule), and \fBval\fP (the value of selector). For
most languages this primitive has a default definition that assigns \fBvar\fP
to \fBval\fP\&.
.TP
.B \fBYYGETCOND\fP
An r\-value of type \fBYYCONDTYPE\fP that is equal to the current condition
identifier.
.TP
.B \fBYYSETCOND\fP
A primitive with one variable \fBcond\fP that should set the current
condition identifier to \fBcond\fP\&.
.TP
.B \fBYYGETSTATE\fP
An r\-value of integer type that is equal to the current lexer state. It
should be initialized to \fB\-1\fP\&.
.TP
.B \fBYYSETSTATE\fP
A primitive with one variable \fBstate\fP that should set the current lexer
state to \fBstate\fP\&.
.TP
.B \fBYYDEBUG\fP
This primitive is generated only with \fB\-d\fP, \fB\-\-debug\-output\fP option.
Its purpose is to add logging to the generated code (typical \fBYYDEBUG\fP
definition is a print statement). \fBYYDEBUG\fP statements are generated in
every state and have two variables: \fBstate\fP (either a DFA state index or
\fB\-1\fP) and \fBsymbol\fP (the current input symbol).
.TP
.B \fByyaccept\fP
An l\-value of unsigned integral type that stores the number of the latest
matched rule. User definition is necessary only with \fB\-\-storable\-state\fP
option.
.TP
.B \fByybm\fP
A table containing compressed bitmaps for up to 8 transitions (used with
the \fB\-\-bitmaps\fP option). The table contains 256 elements and is indexed by
1\-byte code units. Each 8\-bit element combines boolean values for up to 8
transitions. k\-Th bit of n\-th element is true iff n\-th code unit is in the
range of k\-th transition. The idea of this bitmap is to replace many \fIif\fP
branches or \fIswitch\fP cases with one check of a single bit in the table.
.TP
.B \fByych\fP
An l\-value of type \fBYYCTYPE\fP that stores the current input character.
User definition is necessary only with \fB\-f\fP \fB\-\-storable\-state\fP option.
.TP
.B \fByyctable\fP
Jump table generated for the initial condition dispatch (enabled with the
combination of \fB\-\-conditions\fP and \fB\-\-computed\-gotos\fP options).
.TP
.B \fByyfill\fP
An l\-value that stores the result of \fBYYFILL\fP call (this may be necessary
for pure functional languages, where \fBYYFILL\fP is a monadic function with
complex return value).
.TP
.B \fByynmatch\fP
An l\-value of unsigned integral type that stores the number of POSIX
capturing groups in the matched rule.
Used only with \fB\-P\fP \fB\-\-posix\-captures\fP option.
.TP
.B \fByypmatch\fP
An array of l\-values that are used to hold the tag values corresponding
to the capturing parentheses in the matching rule. Array length must be
at least \fByynmatch * 2\fP (usually \fBYYMAXNMATCH * 2\fP is a good choice).
Used only with \fB\-P\fP \fB\-\-posix\-captures\fP option.
.TP
.B \fByystable\fP
Deprecated.
.TP
.B \fByystate\fP
An l\-value used with the \fB\-\-loop\-switch\fP option to store the current DFA
state.
.TP
.B \fByytarget\fP
Jump table that contains jump targets (label addresses) for all transitions
from a state. This table is local to each state. Generation of \fByytarget\fP
tables is enabled with \fB\-\-computed\-gotos\fP option.
.UNINDENT
.SS Options
.sp
Some of the options have corresponding \fI\%configurations\fP,
others are global and cannot be changed after re2c starts reading the input file.
Debug options generally require building re2c in debug configuration.
Internal options are useful for experimenting with the algorithms used in re2c.
.INDENT 0.0
.TP
.B \fB\-? \-\-help \-h\fP
Show help message.
.TP
.B \fB\-\-api <simple | record | generic>\fP
Specify the API used by the generated code to interface with used\-defined
code. Option \fBsimple\fP should be used in simple cases when there\(aqs no need
for buffer refilling and storing lexer state. Option \fBrecord\fP should be
used when lexer state needs to be stored in a record (struct, class, etc.).
Option \fBgeneric\fP should be used in complex cases when the other two APIs
are not flexible enough.
.TP
.B \fB\-\-bit\-vectors \-b\fP
Optimize conditional jumps using bit masks.
This option implies \fB\-\-nested\-ifs\fP\&.
.TP
.B \fB\-\-captures\fP, \fB\-\-leftmost\-captures\fP
Enable submatch extraction with leftmost greedy capturing groups. The result
is collected into an array \fByybmatch\fP of capacity \fB2 * YYMAXNMATCH\fP, and
\fByynmatch\fP is set to the number of groups for the matching rule.
.TP
.B \fB\-\-captvars\fP, \fB\-\-leftmost\-captvars\fP
Enable submatch extraction with leftmost greedy capturing groups. The result
is collected into variables \fByytl<k>\fP, \fByytr<k>\fP for \fBk\fP\-th capturing
group.
.TP
.B \fB\-\-case\-insensitive\fP
Treat single\-quoted and double\-quoted strings as case\-insensitive.
.TP
.B \fB\-\-case\-inverted\fP
Invert the meaning of single\-quoted and double\-quoted strings:
treat single\-quoted strings as case\-sensitive and double\-quoted strings
as case\-insensitive.
.TP
.B \fB\-\-case\-ranges\fP
Collapse consecutive cases in a switch statements into a range of the form
\fBlow ... high\fP\&. This syntax is a C/C++ language extension that is
supported by compilers like GCC, Clang and Tcc. The main advantage over
using single cases is smaller generated code and faster generation time,
although for some compilers like Tcc it also results in smaller binary size.
.TP
.B \fB\-\-computed\-gotos \-g\fP
Optimize conditional jumps using non\-standard \(dqcomputed goto\(dq extension
(which must be supported by the compiler). re2java generates jump tables
only in complex cases with a lot of conditional branches. Complexity
threshold can be configured with \fBcgoto:threshold\fP configuration.
Relative offsets can be enabled with \fBcgoto:relative\fP configuration. This
option implies \fB\-\-bit\-vectors\fP\&.
.TP
.B \fB\-\-computed\-gotos\-relative\fP
Similar to \-\-computed\-gotos but generate relative offsets for jump tables
instead (which must be supported by the compiler). This option implies
\fB\-\-computed\-gotos\fP\&.
.TP
.B \fB\-\-conditions \-\-start\-conditions \-c\fP
Enable support of Flex\-like \(dqconditions\(dq: multiple interrelated lexers
within one block. This is an alternative to manually specifying different
re2java blocks connected with \fBgoto\fP or function calls.
.TP
.B \fB\-\-depfile FILE\fP
Write dependency information to \fBFILE\fP in the form of a Makefile rule
\fB<output\-file> : <input\-file> [include\-file ...]\fP\&. This allows one to
track build dependencies in the presence of \fBinclude\fP blocks/directives,
so that updating include files triggers regeneration of the output file.
This option depends on the \fB\-\-output\fP option.
.TP
.B \fB\-\-ebcdic \-\-ecb \-e\fP
Generate a lexer that reads input in EBCDIC encoding. re2java assumes that
the character range is 0 \-\- 0xFF and character size is 1 byte.
.TP
.B \fB\-\-empty\-class <match\-empty | match\-none | error>\fP
Define the way re2java treats empty character classes. With \fBmatch\-empty\fP
(the default) empty class matches empty input (which is illogical, but
backwards\-compatible). With \fBmatch\-none\fP empty class always fails to match.
With \fBerror\fP empty class raises a compilation error.
.TP
.B \fB\-\-encoding\-policy <fail | substitute | ignore>\fP
Define the way re2java treats Unicode surrogates.
With \fBfail\fP re2java aborts with an error when a surrogate is encountered.
With \fBsubstitute\fP re2java silently replaces surrogates with the error code
point 0xFFFD. With \fBignore\fP (the default) re2java treats surrogates as
normal code points. The Unicode standard says that standalone surrogates
are invalid, but real\-world libraries and programs behave in different ways.
.TP
.B \fB\-\-flex\-syntax \-F\fP
Partial support for Flex syntax: in this mode named definitions don\(aqt need
the equal sign and the terminating semicolon, and when used they must be
surrounded with curly braces. Names without curly braces are treated as
double\-quoted strings.
.TP
.B \fB\-\-goto\-label\fP
Use \(dqgoto/label\(dq code model: encode DFA in form of labeled code blocks
connected with \fBgoto\fP transitions across blocks. This is only supported
for languages that have a \fBgoto\fP statement.
.TP
.B \fB\-\-header \-\-type\-header \-t HEADER\fP
Generate a \fBHEADER\fP file. The contents of the file can be specified using
special blocks \fBheader:on\fP and \fBheader:off\fP\&. If conditions are used, the
generated header will have a condition enum automatically appended to it
(unless there is an explicit \fBconditions\fP block).
.TP
.B \fB\-I PATH\fP
Add \fBPATH\fP to the list of locations which are used when searching for
include files. This option is useful in combination with \fBinclude\fP block
or directive. re2java looks for \fBFILE\fP in the directory of the parent file
and in the include locations specified with \fB\-I\fP option.
.TP
.B \fB\-\-input <default | custom>\fP
Deprecated alias for \fB\-\-api\fP\&. Option \fBdefault\fP corresponds to \fBsimple\fP
(it is indeed the default for most backends, but not for all). Option
\fBcustom\fP corresponds to \fBgeneric\fP\&.
.TP
.B \fB\-\-input\-encoding <ascii | utf8>\fP
Specify the way re2java parses regular expressions.
With \fBascii\fP (the default) re2java handles input as ASCII\-encoded: any
sequence of code units is a sequence of standalone 1\-byte characters.
With \fButf8\fP re2java handles input as UTF8\-encoded and recognizes multibyte
characters.
.TP
.B \fB\-\-invert\-captures\fP
Invert the meaning of capturing and non\-capturing groups. By default
\fB(...)\fP is capturing and \fB(! ...)\fP is non\-capturing. With this option
\fB(! ...)\fP is capturing and \fB(...)\fP is non\-capturing.
.TP
.B \fB\-\-lang <none | c | d | go | haskell | java | js | ocaml | python | rust | swift | v | zig>\fP
Specify the target language. Supported languages are C, D, Go, Haskell,
Java, JS, OCaml, Python, Rust, Swift, V, Zig (more languages can be added via
user\-defined syntax files, see the \fB\-\-syntax\fP option). Option \fBnone\fP
disables default suntax configs, so that the target language is undefined.
.TP
.B \fB\-\-location\-format <gnu | msvc>\fP
Specify location format in messages.
With \fBgnu\fP locations are printed as \(aqfilename:line:column: ...\(aq.
With \fBmsvc\fP locations are printed as \(aqfilename(line,column) ...\(aq.
The default is \fBgnu\fP\&.
.TP
.B \fB\-\-loop\-switch\fP
Use \(dqloop/switch\(dq code model: encode DFA in form of a loop over a switch
statement, where individual states are switch cases. State is stored in a
variable \fByystate\fP\&. Transitions between states update \fByystate\fP to the
case label of the destination state and continue execution to the head of
the loop.
.TP
.B \fB\-\-nested\-ifs \-s\fP
Use nested \fBif\fP statements instead of \fBswitch\fP statements in conditional
jumps. This usually results in more efficient code with non\-optimizing
compilers.
.TP
.B \fB\-\-no\-debug\-info \-i\fP
Do not output line directives. This may be useful when the generated code is
stored in a version control system (to avoid huge autogenerated diffs on
small changes).
.TP
.B \fB\-\-no\-generation\-date\fP
Suppress date output in the generated file.
.TP
.B \fB\-\-no\-version\fP
Suppress version output in the generated file.
.TP
.B \fB\-\-no\-unsafe\fP
Do not generate \fBunsafe\fP wrapper over \fBYYPEEK\fP (this option is specific
to Rust). For performance reasons \fBYYPEEK\fP should avoid bounds\-checking,
as the lexer already performs end\-of\-input checks in a more efficient way.
The user may choose to provide a safe \fBYYPEEK\fP definition, or a definition
that is unsafe only in release builds, in which case the \fB\-\-no\-unsafe\fP
option helps to avoid warnings about redundant \fBunsafe\fP blocks.
.TP
.B \fB\-\-output \-o OUTPUT\fP
Specify the \fBOUTPUT\fP file.
.TP
.B \fB\-\-posix\-captures\fP, \fB\-P\fP
Enable submatch extraction with POSIX\-style capturing groups. The result
is collected into an array \fByybmatch\fP of capacity \fB2 * YYMAXNMATCH\fP, and
\fByynmatch\fP is set to the number of groups for the matching rule.
.TP
.B \fB\-\-posix\-captvars\fP
Enable submatch extraction with POSIX\-style capturing groups. The result
is collected into variables \fByytl<k>\fP, \fByytr<k>\fP for \fBk\fP\-th capturing
group.
.TP
.B \fB\-\-recursive\-functions\fP
Use code model based on co\-recursive functions, where each DFA state is a
separate function that may call other state\-functions or itself.
.TP
.B \fB\-\-reusable \-r\fP
Deprecated since version 2.2 (reusable blocks are allowed by default now).
.TP
.B \fB\-\-skeleton \-S\fP
Ignore user\-defined interface code and generate a self\-contained \(dqskeleton\(dq
program. Additionally, generate input files with strings derived from the
regular grammar and compressed match results that are used to verify
\(dqskeleton\(dq behavior on all inputs. This option is useful for finding bugs
in optimizations and code generation. This option is supported only for C.
.TP
.B \fB\-\-storable\-state \-f\fP
Generate a lexer which can store its inner state.
This is useful in push\-model lexers which are stopped by an outer program
when there is not enough input, and then resumed when more input becomes
available. In this mode users should additionally define \fBYYGETSTATE\fP
and \fBYYSETSTATE\fP primitives, and variables \fByych\fP, \fByyaccept\fP and
\fBstate\fP should be part of the stored lexer state.
.TP
.B \fB\-\-syntax FILE\fP
Load configurations from the specified \fBFILE\fP and apply them on top of the
default syntax file. Note that \fBFILE\fP can define only a few configurations
(if it\(aqs used to amend the default syntax file), or it can define a whole
new language backend (in the latter case it is recommended to use
\fB\-\-lang none\fP option).
.TP
.B \fB\-\-tags \-T\fP
Enable submatch extraction with tags.
.TP
.B \fB\-\-ucs2 \-\-wide\-chars \-w\fP
Generate a lexer that reads UCS2\-encoded input. re2java assumes that the
character range is 0 \-\- 0xFFFF and character size is 2 bytes.
This option implies \fB\-\-nested\-ifs\fP\&.
.TP
.B \fB\-\-utf8 \-\-utf\-8 \-8\fP
Generate a lexer that reads input in UTF\-8 encoding. re2java assumes that the
character range is 0 \-\- 0x10FFFF and character size is 1 byte.
.TP
.B \fB\-\-utf16 \-\-utf\-16 \-x\fP
Generate a lexer that reads UTF16\-encoded input. re2java assumes that the
character range is 0 \-\- 0x10FFFF and character size is 2 bytes.
This option implies \fB\-\-nested\-ifs\fP\&.
.TP
.B \fB\-\-utf32 \-\-unicode \-u\fP
Generate a lexer that reads UTF32\-encoded input. re2java assumes that the
character range is 0 \-\- 0x10FFFF and character size is 4 bytes.
This option implies \fB\-\-nested\-ifs\fP\&.
.TP
.B \fB\-\-verbose\fP
Output a short message in case of success.
.TP
.B \fB\-\-vernum \-V\fP
Show version information in \fBMMmmpp\fP format (major, minor, patch).
.TP
.B \fB\-\-version \-v\fP
Show version information.
.TP
.B \fB\-\-single\-pass \-1\fP
Deprecated. Does nothing (single pass is the default now).
.UNINDENT
.INDENT 0.0
.TP
.B \fB\-\-debug\-output \-d\fP
Emit \fBYYDEBUG\fP invocations in the generated code. This is useful to trace
lexer execution.
.TP
.B \fB\-\-dump\-adfa\fP
Debug option: output DFA after tunneling (in .dot format).
.TP
.B \fB\-\-dump\-cfg\fP
Debug option: output control flow graph of tag variables (in .dot format).
.TP
.B \fB\-\-dump\-closure\-stats\fP
Debug option: output statistics on the number of states in closure.
.TP
.B \fB\-\-dump\-dfa\-det\fP
Debug option: output DFA immediately after determinization (in .dot format).
.TP
.B \fB\-\-dump\-dfa\-min\fP
Debug option: output DFA after minimization (in .dot format).
.TP
.B \fB\-\-dump\-dfa\-tagopt\fP
Debug option: output DFA after tag optimizations (in .dot format).
.TP
.B \fB\-\-dump\-dfa\-tree\fP
Debug option: output DFA under construction with states represented as tag
history trees (in .dot format).
.TP
.B \fB\-\-dump\-dfa\-raw\fP
Debug option: output DFA under construction with expanded state\-sets
(in .dot format).
.TP
.B \fB\-\-dump\-interf\fP
Debug option: output interference table produced by liveness analysis of tag
variables.
.TP
.B \fB\-\-dump\-nfa\fP
Debug option: output NFA (in .dot format).
.TP
.B \fB\-\-emit\-dot \-D\fP
Instead of normal output generate lexer graph in .dot format.
The output can be converted to an image with the help of Graphviz
(e.g. something like \fBdot \-Tpng \-odfa.png dfa.dot\fP).
.UNINDENT
.INDENT 0.0
.TP
.B \fB\-\-dfa\-minimization <moore | table>\fP
Internal option: DFA minimization algorithm used by re2java\&. The \fBmoore\fP
option is the Moore algorithm (it is the default). The \fBtable\fP option is
the \(dqtable filling\(dq algorithm. Both algorithms should produce the same DFA
up to states relabeling; table filling is simpler and much slower and serves
as a reference implementation.
.TP
.B \fB\-\-eager\-skip\fP
Internal option: make the generated lexer advance the input position
eagerly \-\- immediately after reading the input symbol. This changes the
default behavior when the input position is advanced lazily \-\- after
transition to the next state.
.TP
.B \fB\-\-no\-lookahead\fP
Internal option, deprecated.
It used to enable TDFA(0) algorithm. Unlike TDFA(1), TDFA(0) algorithm does
not use one\-symbol lookahead. It applies register operations to the incoming
transitions rather than the outgoing ones. Benchmarks showed that TDFA(0)
algorithm is less efficient than TDFA(1).
.TP
.B \fB\-\-no\-optimize\-tags\fP
Internal option: suppress optimization of tag variables (useful for
debugging).
.TP
.B \fB\-\-posix\-closure <gor1 | gtop>\fP
Internal option: specify shortest\-path algorithm used for the construction of
epsilon\-closure with POSIX disambiguation semantics: \fBgor1\fP (the default)
stands for Goldberg\-Radzik algorithm, and \fBgtop\fP stands for \(dqglobal
topological order\(dq algorithm.
.TP
.B \fB\-\-posix\-prectable <complex | naive>\fP
Internal option: specify the algorithm used to compute POSIX precedence
table. The \fBcomplex\fP algorithm computes precedence table in one traversal
of tag history tree and has quadratic complexity in the number of TNFA
states; it is the default. The \fBnaive\fP algorithm has worst\-case cubic
complexity in the number of TNFA states, but it is much simpler than
\fBcomplex\fP and may be slightly faster in non\-pathological cases.
.TP
.B \fB\-\-stadfa\fP
Internal option, deprecated.
It used to enable staDFA algorithm, which differs from TDFA in that register
operations are placed in states rather than on transitions. Benchmarks
showed that staDFA algorithm is less efficient than TDFA.
.TP
.B \fB\-\-fixed\-tags <none | toplevel | all>\fP
Internal option:
specify whether the fixed\-tag optimization should be applied to all tags
(\fBall\fP), none of them (\fBnone\fP), or only those in toplevel concatenation
(\fBtoplevel\fP). The default is \fBall\fP\&.
\(dqFixed\(dq tags are those that are located within a fixed distance to some
other tag (called \(dqbase\(dq). In such cases only the base tag needs to be
tracked, and the value of the fixed tag can be computed as the value of the
base tag plus a static offset. For tags that are under alternative or
repetition it is also necessary to check if the base tag has a no\-match
value (in that case fixed tag should also be set to no\-match, disregarding
the offset). For tags in top\-level concatenation the check is not needed,
because they always match.
.UNINDENT
.SS Warnings
.sp
Warnings can be invividually enabled, disabled and turned into an error.
.INDENT 0.0
.TP
.B \fB\-W\fP
Turn on all warnings.
.TP
.B \fB\-Werror\fP
Turn warnings into errors. Note that this option alone
doesn\(aqt turn on any warnings; it only affects those warnings that have
been turned on so far or will be turned on later.
.TP
.B \fB\-W<warning>\fP
Turn on \fBwarning\fP\&.
.TP
.B \fB\-Wno\-<warning>\fP
Turn off \fBwarning\fP\&.
.TP
.B \fB\-Werror\-<warning>\fP
Turn on \fBwarning\fP and treat it as an error (this implies \fB\-W<warning>\fP).
.TP
.B \fB\-Wno\-error\-<warning>\fP
Don\(aqt treat this particular \fBwarning\fP as an error. This doesn\(aqt turn off
the warning itself.
.UNINDENT
.INDENT 0.0
.TP
.B \fB\-Wcondition\-order\fP
Warn if the generated program makes implicit assumptions about condition
numbering. One should use either \fB\-\-header\fP option or \fBconditions\fP
block to generate a mapping of condition names to numbers and then use the
autogenerated condition names.
.TP
.B \fB\-Wempty\-character\-class\fP
Warn if a regular expression contains an empty character class. Trying to
match an empty character class makes no sense: it should always fail.
However, for backwards compatibility reasons re2java permits empty character
classes and treats them as empty strings. Use the \fB\-\-empty\-class\fP option
to change the default behavior.
.TP
.B \fB\-Wmatch\-empty\-string\fP
Warn if a rule is nullable (matches an empty string).
If the lexer runs in a loop and the empty match is unintentional, the lexer
may unexpectedly hang in an infinite loop.
.TP
.B \fB\-Wswapped\-range\fP
Warn if the lower bound of a range is greater than its upper bound. The
default behavior is to silently swap the range bounds.
.TP
.B \fB\-Wundefined\-control\-flow\fP
Warn if some input strings cause undefined control flow in the lexer (the
faulty patterns are reported). This is a dangerous and common mistake. It
can be easily fixed by adding the default rule \fB*\fP which has the lowest
priority, matches any code unit, and always consumes a single code unit.
.TP
.B \fB\-Wunreachable\-rules\fP
Warn about rules that are shadowed by other rules and will never match.
.TP
.B \fB\-Wdeprecated\-eof_rule\fP
Warn about standalone end of input rules \fB$\fP that will be broken by the
future changes and require fixing. At the moment these rules take precedence
when conflicting with other rules, but after the introduction of generalized
end of input symbol \fB$\fP precedence order will change and these rules will
become shadowed by other rules.
.TP
.B \fB\-Wuseless\-escape\fP
Warn if a symbol is escaped when it shouldn\(aqt be.
By default, re2java silently ignores such escapes, but this may as well
indicate a typo or an error in the escape sequence.
.TP
.B \fB\-Wnondeterministic\-tags\fP
Warn if a tag has \fBn\fP\-th degree of nondeterminism, where \fBn\fP is greater
than 1.
.TP
.B \fB\-Wsentinel\-in\-midrule\fP
Warn if the sentinel symbol occurs in the middle of a rule \-\-\- this may
cause reads past the end of buffer, crashes or memory corruption in the
generated lexer. This warning is only applicable if the sentinel method of
checking for the end of input is used.
It is set to an error if \fBre2c:sentinel\fP configuration is used.
.TP
.B \fB\-Wundefined\-syntax\-config\fP
Warn if the syntax file specified with \fB\-\-syntax\fP option is missing
definitions of some configurations. This helps to maintain user\-defined
syntax files: if a new release adds configurations, old syntax file will
raise a warning, and the user will be notified. If some configurations are
unused and do not need a definition, they should be explicitly set to
\fB<undefined>\fP\&.
.UNINDENT
.SS Syntax files
.sp
Support for different languages in re2c is based on the idea of \fIsyntax files\fP\&.
A syntax file is a configuration file that defines syntax of the target language
\-\- not the whole language, but a small part of it that is used by the generated
code. Syntax files make re2c very flexible, but they should not be used as a
replacement for \fBre2c:\fP configurations: their purpose is to define syntax of
the target language, not to customize one particular lexer. All supported
languages have default syntax files that are part of the distribution (see
\fBinclude/syntax\fP subdirectory); they are also embedded in the re2java binary.
Users may provide a custom syntax file that overrides a few configurations for
one of supported languages, or they may choose to redefine all configurations
(in that case \fB\-\-lang none\fP option should be used).
Syntax files contain configurations of four different kinds: feature lists,
language configurations, inplace configurations and code templates.
.sp
\fBFeature lists\fP
.INDENT 0.0
.INDENT 3.5
A few list configurations define various features supported by a given
backend, so that re2java may give a clear error if the user tries to enable an
unsupported feature:
.INDENT 0.0
.TP
.B \fBsupported_apis\fP
A list of supported APIs with possible elements \fBsimple\fP, \fBrecord\fP,
\fBgeneric\fP\&.
.TP
.B \fBsupported_api_styles\fP
A list of supported API styles with possible elements \fBfunctions\fP,
\fBfree\-form\fP\&.
.TP
.B \fBsupported_code_models\fP
A list of supported code models with possible elements \fBgoto\-label\fP,
\fBloop\-switch\fP, \fBrecursive\-functions\fP\&.
.TP
.B \fBsupported_targets\fP
A list of supported codegen targets with possible elements \fBcode\fP,
\fBdot\fP, \fBskeleton\fP\&.
.TP
.B \fBsupported_features\fP
A list of supported features with possible elements \fBnested\-ifs\fP,
\fBbitmaps\fP, \fBcomputed\-gotos\fP, \fBcase\-ranges\fP, \fBmonadic\fP, \fBunsafe\fP,
\fBtags\fP, \fBcaptures\fP, \fBcaptvars\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
\fBLanguage configurations\fP
.INDENT 0.0
.INDENT 3.5
A few boolean configurations describe features of the target language that
affect re2java parser and code generator:
.INDENT 0.0
.TP
.B \fBsemicolons\fP
Non\-zero if the language uses semicolons after statements.
.TP
.B \fBbacktick_quoted_strings\fP
Non\-zero if the language has backtick\-quoted strings.
.TP
.B \fBsingle_quoted_strings\fP
Non\-zero if the language has single\-quoted strings.
.TP
.B \fBindentation_sensitive\fP
Non\-zero if the language is indentation sensitive.
.TP
.B \fBwrap_blocks_in_braces\fP
Non\-zero if compound statements must be wrapped in curly braces.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
\fBInplace configurations\fP
.INDENT 0.0
.INDENT 3.5
Syntax files define initial values of all \fBre2c:\fP configurations, as they
may differ for different languages. See configurations section for a full list
of all inplace configurations and their meaning.
.UNINDENT
.UNINDENT
.sp
\fBCode templates\fP
.INDENT 0.0
.INDENT 3.5
Code templates define syntax of the target language. They are written in a
simple domain\-specific language with the following formal grammar:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
code\-template ::
name \(aq=\(aq code\-exprs \(aq;\(aq
| CODE_TEMPLATE \(aq;\(aq
| \(aq<undefined>\(aq \(aq;\(aq
code\-exprs ::
<EMPTY>
| code\-exprs code\-expr
code\-expr ::
STRING
| VARIABLE
| optional
| list
optional ::
\(aq(\(aq CONDITIONAL \(aq?\(aq code\-exprs \(aq)\(aq
| \(aq(\(aq CONDITIONAL \(aq?\(aq code\-exprs \(aq:\(aq code\-exprs \(aq)\(aq
list ::
\(aq[\(aq VARIABLE \(aq:\(aq code\-exprs \(aq]\(aq
| \(aq[\(aq VARIABLE \(aq{\(aq NUMBER \(aq}\(aq \(aq:\(aq code\-exprs \(aq]\(aq
| \(aq[\(aq VARIABLE \(aq{\(aq NUMBER \(aq,\(aq NUMBER \(aq}\(aq \(aq:\(aq code\-exprs \(aq]\(aq
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
A code template is a sequence of string literals, variables, optional elements
and lists, or a reference to another code template, or a special value
\fB<undefined>\fP\&. Variables are placeholders that are substituted during code
generation phase. List variables are special: when expanding list templates,
re2java repeats expressions the right hand side of the column a few times, each
time replacing occurrences of the list variable with a value specific to this
repetition. Lists have optional bounds (negative values are counted from the
end, e.g. \fB\-1\fP means the last element). Conditional names start with a dot.
Both conditionals and variables may be either local (specific to the given
code template) or global (allowed in all code templates). When re2java reads
syntax file, it checks that each code template uses only the variables and
conditionals that are allowed in it.
.sp
For example, the following code template defines if\-then\-else construct for a
C\-like language:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
code:if_then_else =
[branch{0}: topindent \(dqif \(dq cond \(dq {\(dq nl
indent [stmt: stmt] dedent]
[branch{1:\-1}: topindent \(dq} else\(dq (.cond ? \(dq if \(dq cond) \(dq {\(dq nl
indent [stmt: stmt] dedent]
topindent \(dq}\(dq nl;
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here \fBbranch\fP is a list variable: \fBbranch{0}\fP expands to the first branch
(which is special, as there is no \fBelse\fP part), \fBbranch{1:\-1}\fP expands to
all remaining branches (if any). \fBstmt\fP is also a list variable:
\fB[stmt: stmt]\fP is a nested list that expands to a list of statements in the
body of the current branch. \fBtopindent\fP, \fBindent\fP, \fBdedent\fP and \fBnl\fP
are global variables, and \fB\&.cond\fP is a local conditional (their meaning is
described below). This code template could produce the following code:
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
if x {
// do something
} else if y {
// do something else
} else {
// don\(aqt do anything
}
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here\(aqs a list of all code templates supported by re2java with their local
variables and conditionals. Note that a particular definition may, but does
not have to use local variables and conditionals.
Any unused code templates should be set to \fB<undefined>\fP\&.
.INDENT 0.0
.TP
.B \fBcode:var_local\fP
Declaration or definition of a local variable. Supported variables:
\fBtype\fP (the type of the variable), \fBname\fP (its name) and \fBinit\fP
(initial value, if any). Conditionals: \fB\&.init\fP (true if there is an
initializer).
.TP
.B \fBcode:var_global\fP
Same as \fBcode:var_local\fP, except that it\(aqs used in top\-level.
.TP
.B \fBcode:const_local\fP
Definition of a local constant. Supported variables: \fBtype\fP (the type
of the constant), \fBname\fP (its name) and \fBinit\fP (initial value).
.TP
.B \fBcode:const_global\fP
Same as \fBcode:const_local\fP, except that it\(aqs used in top\-level.
.TP
.B \fBcode:array_local\fP
Definition of a local array (table). Supported variables: \fBtype\fP (the
type of array elements), \fBname\fP (array name), \fBsize\fP (its size),
\fBrow\fP (a list variable that does not itself produce any code, but
expands list expression as many times as there are rows in the table)
and \fBelem\fP (a list variable that expands to all table elements in the
current row \-\- it\(aqs meant to be nested in the \fBrow\fP list).
Supported conditional: \fB\&.const\fP (true if the array is immutable).
.TP
.B \fBcode:array_global\fP
Same as \fBcode:array_local\fP, except that it\(aqs used in top\-level.
.TP
.B \fBcode:array_elem\fP
Reference to an element of an array (table). Supported variables:
\fBarray\fP (the name of the array) and \fBindex\fP (index of the element).
.TP
.B \fBcode:enum\fP
Definition of an enumeration (it may be defined using a special language
construct for enumerations, or simply as a few standalone constants).
Supported variables are \fBtype\fP (user\-defined enumeration type or type
of the constants), \fBelem\fP (list variable that expands to the name of
each member) and \fBinit\fP (initializer for each member). Conditionals:
\fB\&.init\fP (true if there is an initializer).
.TP
.B \fBcode:enum_elem\fP
Enumeration element (a member of a user\-defined enumeration type or a
name of a constant, depending on how \fBcode:enum\fP is defined).
Supported variables are \fBname\fP (the name of the element) and \fBtype\fP
(its type).
.TP
.B \fBcode:assign\fP
Assignment statement. Supported variables are \fBlhs\fP (left hand side)
and \fBrhs\fP (right hand side).
.TP
.B \fBcode:type_int\fP
Signed integer type.
.TP
.B \fBcode:type_uint\fP
Unsigned integer type.
.TP
.B \fBcode:type_yybm\fP
Type of elements in the \fByybm\fP table.
.TP
.B \fBcode:type_yytarget\fP
Type of elements in the \fByytarget\fP table.
.TP
.B \fBcode:type_yyctable\fP
Type of elements in the \fByyctable\fP table.
.TP
.B \fBcode:cmp_eq\fP
Operator \(dqequals\(dq.
.TP
.B \fBcode:cmp_ne\fP
Operator \(dqnot equals\(dq.
.TP
.B \fBcode:cmp_lt\fP
Operator \(dqless than\(dq.
.TP
.B \fBcode:cmp_gt\fP
Operator \(dqgreater than\(dq
.TP
.B \fBcode:cmp_le\fP
Operator \(dqless or equal\(dq
.TP
.B \fBcode:cmp_ge\fP
Operator \(dqgreater or equal\(dq
.TP
.B \fBcode:if_then_else\fP
If\-then\-else statement with one or more branches. Supported variables:
\fBbranch\fP (a list variable that does not itself produce any code, but
expands list expression as many times as there are branches), \fBcond\fP
(condition of the current branch) and \fBstmt\fP (a list variable that
expands to all statements in the current branch). Conditionals:
\fB\&.cond\fP (true if the current branch has a condition), \fB\&.many\fP (true
if there\(aqs more than one branch).
.TP
.B \fBcode:if_then_else_oneline\fP
A specialization of \fBcode:if_then_else\fP for the case when all branches
have one\-line statements. If this is \fB<undefined>\fP,
\fBcode:if_then_else\fP is used instead.
.TP
.B \fBcode:switch\fP
A switch statement with one or more cases. Supported variables: \fBexpr\fP
(the switched\-on expression) and \fBcase\fP (a list variable that expands
to all cases\-groups with their code blocks).
.TP
.B \fBcode:switch_cases\fP
A group of switch cases that maps to a single code block. Supported
variables are \fBcase\fP (a list variable that expands to all cases in
this group) and \fBstmt\fP (a list variable that expands to all statements
in the code block.
.TP
.B \fBcode:switch_cases_oneline\fP
A specialization of \fBcode:switch_cases\fP for the case when the code
block consists of a single one\-line statement. If this is
\fB<undefined>\fP, \fBcode:switch_cases\fP is used instead.
.TP
.B \fBcode:switch_case_range\fP
A single switch case that covers a range of values (possibly consisting
of a single value). Supported variable: \fBval\fP (a list variable that
expands to all values in the range). Supported conditionals: \fB\&.many\fP
(true if there\(aqs more than one value in the range) and
\fB\&.char_literals\fP (true if this is a switch on character literals \-\-
some languages provide special syntax for this case).
.TP
.B \fBcode:switch_case_default\fP
Default switch case.
.TP
.B \fBcode:loop\fP
A loop that runs forever (unless interrupted from the loop body).
Supported variables: \fBlabel\fP (loop label), \fBstmt\fP (a list variable
that expands to all statements in the loop body).
.TP
.B \fBcode:continue\fP
Continue statement. Supported variables: \fBlabel\fP (label from which to
continue execution).
.TP
.B \fBcode:goto\fP
Goto statement. Supported variables: \fBlabel\fP (label of the jump
target).
.TP
.B \fBcode:cgoto\fP
Computed \fBgoto\fP statement.
Supported variables: \fBarray\fP (the table containing computed \fBgoto\fP
information), \fBindex\fP (index of the element in the table) and \fBbase\fP
(base label, only used if \fB\&.cgoto.relative\fP is true).
.TP
.B \fBcode:cgoto:data\fP
Initializer expression for a single element in computed \fBgoto\fP table.
Supported variables: \fBlabel\fP (the label that is used to initialize the
current element), \fBtype\fP (underlying type of the elements in the table)
and \fBbase\fP (base label \- only used if \fB\&.cgoto.relative\fP is true).
.TP
.B \fBcode:fndecl\fP
Function declaration. Supported variables: \fBname\fP (function name),
\fBtype\fP (return type), \fBthrow\fP (exceptions thrown by this function,
maps to \fBre2c:yyfn:throw\fP configuration), \fBarg\fP (a list variable that
does not itself produce code, but expands list expression as many times as
there are function arguments), \fBargname\fP (name of the current argument),
\fBargtype\fP (type of the current argument). Conditional: \fB\&.type\fP (true
if this is a non\-void function).
.TP
.B \fBcode:fndef\fP
Like \fBcode:fndecl\fP, but used for function definitions, so it has one
additional list variable \fBstmt\fP that expands to all statements in the
function body.
.TP
.B \fBcode:fncall\fP
Function call statement. Supported variables: \fBname\fP (function name),
\fBretval\fP (l\-value where the return value is stored, if any) and
\fBarg\fP (a list variable that expands to all function arguments).
Conditionals: \fB\&.args\fP (true if the function has arguments) and
\fB\&.retval\fP (true if return value needs to be saved).
.TP
.B \fBcode:tailcall\fP
Tail call statement. Supported variables: \fBname\fP (function name),
and \fBarg\fP (a list variable that expands to all function arguments).
Conditionals: \fB\&.args\fP (true if the function has arguments) and
\fB\&.retval\fP (true if this is a non\-void function).
.TP
.B \fBcode:recursive_functions\fP
Program body with \fB\-\-recursive\-functions\fP code model. Supported
variables: \fBfn\fP (a list variable that does not itself produce any
code, but expands list expression as many times as there are functions),
\fBfndecl\fP (declaration of the current function) and \fBfndef\fP
(definition of the current function).
.TP
.B \fBcode:fingerprint\fP
The fingerprint at the top of the generated output file. Supported
variables: \fBver\fP (re2java version that was used to generate this) and
\fBdate\fP (generation date).
.TP
.B \fBcode:line_info\fP
The format of line directives (if this is set to \fB<undefined>\fP, no
directives are generated). Supported variables: \fBline\fP (line number)
and \fBfile\fP (filename).
.TP
.B \fBcode:abort\fP
A statement that aborts program execution.
.TP
.B \fBcode:yydebug\fP
\fBYYDEBUG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYDEBUG\fP, \fByyrecord\fP, \fByych\fP (map to the
corresponding \fBre2c:\fP configurations), \fBstate\fP (DFA state number).
.TP
.B \fBcode:yypeek\fP
\fBYYPEEK\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYPEEK\fP, \fBYYCTYPE\fP, \fBYYINPUT\fP, \fBYYCURSOR\fP,
\fByyrecord\fP, \fByych\fP (map to the corresponding \fBre2c:\fP
configurations). Conditionals: \fB\&.cast\fP (true if
\fBre2c:yych:conversion\fP is set to non\-zero).
.TP
.B \fBcode:yyskip\fP
\fBYYSKIP\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSKIP\fP, \fBYYCURSOR\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations).
.TP
.B \fBcode:yybackup\fP
\fBYYBACKUP\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYBACKUP\fP, \fBYYCURSOR\fP, \fBYYMARKER\fP,
\fByyrecord\fP (map to the corresponding \fBre2c:\fP configurations).
.TP
.B \fBcode:yybackupctx\fP
\fBYYBACKUPCTX\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYBACKUPCTX\fP, \fBYYCURSOR\fP, \fBYYCTXMARKER\fP,
\fByyrecord\fP (map to the corresponding \fBre2c:\fP configurations).
.TP
.B \fBcode:yyskip_yypeek\fP
Combined \fBcode:yyskip\fP and \fBcode:yypeek\fP statement (defaults to
\fBcode:yyskip\fP followed by \fBcode:yypeek\fP).
.TP
.B \fBcode:yypeek_yyskip\fP
Combined \fBcode:yypeek\fP and \fBcode:yyskip\fP statement (defaults to
\fBcode:yypeek\fP followed by \fBcode:yyskip\fP).
.TP
.B \fBcode:yyskip_yybackup\fP
Combined \fBcode:yyskip\fP and \fBcode:yybackup\fP statement (defaults to
\fBcode:yyskip\fP followed by \fBcode:yybackup\fP).
.TP
.B \fBcode:yybackup_yyskip\fP
Combined \fBcode:yybackup\fP and \fBcode:yyskip\fP statement (defaults to
\fBcode:yybackup\fP followed by \fBcode:yyskip\fP).
.TP
.B \fBcode:yybackup_yypeek\fP
Combined \fBcode:yybackup\fP and \fBcode:yypeek\fP statement (defaults to
\fBcode:yybackup\fP followed by \fBcode:yypeek\fP).
.TP
.B \fBcode:yyskip_yybackup_yypeek\fP
Combined \fBcode:yyskip\fP, \fBcode:yybackup\fP and \fBcode:yypeek\fP
statement (defaults to\(ga\(gacode:yyskip\(ga\(ga followed by \fBcode:yybackup\fP
followed by \fBcode:yypeek\fP).
.TP
.B \fBcode:yybackup_yypeek_yyskip\fP
Combined \fBcode:yybackup\fP, \fBcode:yypeek\fP and \fBcode:yyskip\fP
statement (defaults to\(ga\(gacode:yybackup\(ga\(ga followed by \fBcode:yypeek\fP
followed by \fBcode:yyskip\fP).
.TP
.B \fBcode:yyrestore\fP
\fBYYRESTORE\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYRESTORE\fP, \fBYYCURSOR\fP, \fBYYMARKER\fP,
\fByyrecord\fP (map to the corresponding \fBre2c:\fP configurations).
.TP
.B \fBcode:yyrestorectx\fP
\fBYYRESTORECTX\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYRESTORECTX\fP, \fBYYCURSOR\fP, \fBYYCTXMARKER\fP,
\fByyrecord\fP (map to the corresponding \fBre2c:\fP configurations).
.TP
.B \fBcode:yyrestoretag\fP
\fBYYRESTORETAG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYRESTORETAG\fP, \fBYYCURSOR\fP, \fByyrecord\fP (map
to the corresponding \fBre2c:\fP configurations), \fBtag\fP (the name of tag
variable used to restore position).
.TP
.B \fBcode:yyshift\fP
\fBYYSHIFT\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSHIFT\fP, \fBYYCURSOR\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBoffset\fP (the number of code
units to shift the current position).
.TP
.B \fBcode:yyshiftstag\fP
\fBYYSHIFTSTAG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSHIFTSTAG\fP, \fByyrecord\fP, \fBnegative\fP (map
to the corresponding \fBre2c:\fP configurations), \fBtag\fP (tag variable
which needs to be shifted), \fBoffset\fP (the number of code units to
shift). Conditionals: \fB\&.nested\fP (true if this is a nested tag \-\- in
this case its value may equal to \fBre2c:tags:negative\fP, which should
not be shifted).
.TP
.B \fBcode:yyshiftmtag\fP
\fBYYSHIFTMTAG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSHIFTMTAG\fP (maps to the corresponding
\fBre2c:\fP configuration), \fBtag\fP (tag variable which needs to be
shifted), \fBoffset\fP (the number of code units to shift).
.TP
.B \fBcode:yystagp\fP
\fBYYSTAGP\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSTAGP\fP, \fBYYCURSOR\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBtag\fP (tag variable that
should be updated).
.TP
.B \fBcode:yymtagp\fP
\fBYYMTAGP\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYMTAGP\fP (maps to the corresponding \fBre2c:\fP
configuration), \fBtag\fP (tag variable that should be updated).
.TP
.B \fBcode:yystagn\fP
\fBYYSTAGN\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSTAGN\fP, \fBnegative\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBtag\fP (tag variable that
should be updated).
.TP
.B \fBcode:yymtagn\fP
\fBYYMTAGN\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYMTAGN\fP (maps to the corresponding \fBre2c:\fP
configuration), \fBtag\fP (tag variable that should be updated).
.TP
.B \fBcode:yycopystag\fP
\fBYYCOPYSTAG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYCOPYSTAG\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBlhs\fP, \fBrhs\fP (left and
right hand side tag variables of the copy operation).
.TP
.B \fBcode:yycopymtag\fP
\fBYYCOPYMTAG\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYCOPYMTAG\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBlhs\fP, \fBrhs\fP (left and
right hand side tag variables of the copy operation).
.TP
.B \fBcode:yygetaccept\fP
\fBYYGETACCEPT\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYGETACCEPT\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yyaccept\fP configuration).
.TP
.B \fBcode:yysetaccept\fP
\fBYYSETACCEPT\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSETACCEPT\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yyaccept\fP configuration) and \fBval\fP (numeric value of the
accepted rule).
.TP
.B \fBcode:yygetcond\fP
\fBYYGETCOND\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYGETCOND\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yycond\fP configuration).
.TP
.B \fBcode:yysetcond\fP
\fBYYSETCOND\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSETCOND\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yycond\fP configuration) and \fBval\fP (numeric condition
identifier).
.TP
.B \fBcode:yygetstate\fP
\fBYYGETSTATE\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYGETSTATE\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yystate\fP configuration).
.TP
.B \fBcode:yysetstate\fP
\fBYYSETSTATE\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYSETSTATE\fP, \fByyrecord\fP (map to the
corresponding \fBre2c:\fP configurations), \fBvar\fP (maps to
\fBre2c:yystate\fP configuration) and \fBval\fP (state number).
.TP
.B \fBcode:yylessthan\fP
\fBYYLESSTHAN\fP statement, possibly specialized for different APIs.
Supported variables: \fBYYLESSTHAN\fP, \fBYYCURSOR\fP, \fBYYLIMIT\fP,
\fByyrecord\fP (map to the corresponding \fBre2c:\fP configurations),
\fBneed\fP (the number of code units to check against). Conditional:
\fB\&.many\fP (true if the \fBneed\fP is more than one).
.TP
.B \fBcode:yyend\fP
\fBYYEND\fP expression, possibly specialized for different APIs.
Supported variables: \fBYYEND\fP, \fBYYCURSOR\fP, \fBYYLIMIT\fP\&.
.TP
.B \fBcode:yybm_filter\fP
Condition that is used to filter out \fByych\fP values that are not
covered by the \fByybm\fP table (used with \fB\-\-bitmaps\fP option).
Supported variable: \fByych\fP (maps to \fBre2c:yych\fP configuration).
.TP
.B \fBcode:yybm_match\fP
The format of \fByybm\fP table check (generated with \fB\-\-bitmaps\fP
option). Supported variables: \fByybm\fP, \fByych\fP (map to the
corresponding \fBre2c:\fP configurations), \fBoffset\fP (offset in the
\fByybm\fP table that needs to be added to \fByych\fP) and \fBmask\fP (bit
mask that should be applied to the table entry to retrieve the boolean
value that needs to be checked)
.TP
.B \fBcode:yytarget_filter\fP
Condition that is used to filter out \fByych\fP values that are not
covered by the \fByytarget\fP table (used with \fB\-\-computed\-gotos\fP option).
Supported variable: \fByych\fP (maps to \fBre2c:yych\fP configuration).
.UNINDENT
.sp
Here\(aqs a list of all global variables that are allowed in syntax files:
.INDENT 0.0
.TP
.B \fBnl\fP
A newline.
.TP
.B \fBindent\fP
A variable that does not produce any code, but has a side\-effect of
increasing indentation level.
.TP
.B \fBdedent\fP
A variable that does not produce any code, but has a side\-effect of
decreasing indentation level.
.TP
.B \fBtopindent\fP
Indentation string for the current statement. Indentation level is
tracked and automatically updated by the code generator.
.UNINDENT
.sp
Here\(aqs a list of all global conditionals that are allowed in syntax files:
.INDENT 0.0
.TP
.B \fB\&.api.simple\fP
True if simple API is used (\fB\-\-api simple\fP or \fBre2c:api = simple\fP).
.TP
.B \fB\&.api.generic\fP
True if generic API is used (\fB\-\-api generic\fP or
\fBre2c:api = generic\fP).
.TP
.B \fB\&.api.record\fP
True if record API is used (\fB\-\-api record\fP or \fBre2c:api = record\fP).
.TP
.B \fB\&.api_style.functions\fP
True if function\-like API style is used
(\fBre2c:api\-style = functions\fP).
.TP
.B \fB\&.api_style.freeform\fP
True if free\-form API style is used (\fBre2c:api\-style = free\-form\fP).
.TP
.B \fB\&.case_ranges\fP
True if case ranges feature is enabled (\fB\-\-case\-ranges\fP or
\fBre2c:case\-ranges = 1\fP).
.TP
.B \fB\&.cgoto.relative\fP
True if the relative form of computed \fBgoto\fP is used
(\fB\-\-computed\-gotos\-relative\fP or \fBre2c:cgoto:relative = 1\fP).
.TP
.B \fB\&.code_model.goto_label\fP
True if code model based on goto/label is used (\fB\-\-goto\-label\fP).
.TP
.B \fB\&.code_model.loop_switch\fP
True if code model based on loop/switch is used (\fB\-\-loop\-switch\fP).
.TP
.B \fB\&.code_model.recursive_functions\fP
True if code model based on recursive functions is used
(\fB\-\-recursive\-function\fP).
.TP
.B \fB\&.date\fP
True if the generated fingerprint should contain generation date.
.TP
.B \fB\&.loop_label\fP
True if re2java generated loops must have a label (\fBre2c:label:yyloop\fP
is set to a nonempty string).
.TP
.B \fB\&.monadic\fP
True if the generated code should be monadic (\fBre2c:monadic = 1\fP).
This is only relevant for pure functional languages.
.TP
.B \fB\&.start_conditions\fP
True if start conditions are enabled (\fB\-\-start\-conditions\fP).
.TP
.B \fB\&.storable_state\fP
True if storable state is enabled (\fB\-\-storable\-state\fP).
.TP
.B \fB\&.unsafe\fP
True if re2java should use \(dqunsafe\(dq blocks in order to generate faster
code (\fB\-\-unsafe\fP, \fBre2c:unsafe = 1\fP). This is only relevant for
languages that have \(dqunsafe\(dq feature.
.TP
.B \fB\&.version\fP
True if the generated fingerprint should contain re2java version.
.TP
.B \fB\&.yyfill.enable\fP
True if \fBYYFILL\fP is enabled (\fBre2c:yyfill:enable = 1\fP).
.TP
.B \fB\&.yyfn.throw\fP
True if \fBre2c:yyfn:throw\fP configuration is defined to a nonempty string.
.UNINDENT
.UNINDENT
.UNINDENT
.SH HANDLING THE END OF INPUT
.sp
One of the main problems for the lexer is to know when to stop.
There are a few terminating conditions:
.INDENT 0.0
.IP \(bu 2
the lexer may match some rule (including default rule \fB*\fP) and come to a
final state
.IP \(bu 2
the lexer may fail to match any rule and come to a default state
.IP \(bu 2
the lexer may reach the end of input
.UNINDENT
.sp
The first two conditions terminate the lexer in a \(dqnatural\(dq way: it comes to a
state with no outgoing transitions, and the matching automatically stops. The
third condition, end of input, is different: it may happen in any state, and the
lexer should be able to handle it. Checking for the end of input interrupts the
normal lexer workflow and adds conditional branches to the generated program,
therefore it is necessary to minimize the number of such checks. re2java supports
a few different methods for handling the end of input. Which one to use depends
on the complexity of regular expressions, the need for buffering, performance
considerations and other factors. Here is a list of methods:
.INDENT 0.0
.IP \(bu 2
\fBSentinel.\fP
This method eliminates the need for the end of input checks altogether. It is
simple and efficient, but limited to the case when there is a natural
\(dqsentinel\(dq character that can never occur in valid input. This character may
still occur in invalid input, but it should not be allowed by the regular
expressions, except perhaps as the last character of a rule. The sentinel is
appended at the end of input and serves as a stop signal: when the lexer reads
this character, it is either a syntax error or the end of input. In both
cases the lexer should stop. This method is used if \fBYYFILL\fP is disabled
with \fBre2c:yyfill:enable = 0;\fP and \fBre2c:eof\fP has the default value
\fB\-1\fP\&.
.nf
.fi
.sp
.IP \(bu 2
\fBSentinel with bounds checks.\fP
This method is generic: it allows one to handle any input without restrictions on
the regular expressions. The idea is to reduce the number of end of input
checks by performing them only on certain characters. Similar to the
\(dqsentinel\(dq method, one of the characters is chosen as a \(dqsentinel\(dq and
appended at the end of input. However, there is no restriction on where the
sentinel may occur (in fact, any character can be chosen for a sentinel).
When the lexer reads this character, it additionally performs a bounds check.
If the current position is within bounds, the lexer resumes matching and
handles the sentinel as a regular character. Otherwise it invokes \fBYYFILL\fP
(unless it is disabled). If more input is supplied, the lexer will rematch the
last character and continue as if the sentinel wasn\(aqt there. Otherwise it must
be the real end of input, and the lexer stops. This method is used when
\fBre2c:eof\fP has non\-negative value (it should be set to the numeric value of
the sentinel). \fBYYFILL\fP is optional.
.nf
.fi
.sp
.IP \(bu 2
\fBBounds checks with padding.\fP
This method is generic, and it may be faster than the \(dqsentinel with bounds
checks\(dq method, but it is also more complex. The idea is to partition DFA
states into strongly connected components (SCCs) and generate a single check
per SCC for enough characters to cover the longest non\-looping path in this
SCC. This reduces the number of checks, but there is a problem with short
lexemes at the end of input, as the check requires enough characters to cover
the longest lexeme. This can be fixed by padding the input with a few fake
characters that do not form a valid lexeme suffix (so that the lexer cannot
match them). The length of padding should be \fBYYMAXFILL\fP, generated with
a \fBmax\fP block. If there is not enough input, the lexer invokes \fBYYFILL\fP
which should supply at least the required number of characters or not return.
This method is used if \fBYYFILL\fP is enabled and \fBre2c:eof\fP is \fB\-1\fP
(this is the default configuration).
.nf
.fi
.sp
.IP \(bu 2
\fBCustom checks.\fP
Generic API allows one to override basic operations like reading a character,
which makes it possible to include the end\-of\-input checks as part of them.
This approach is error\-prone and should be used with caution. To use a custom
method, enable generic API with \fB\-\-api custom\fP or \fBre2c:api = custom;\fP and
disable default bounds checks with \fBre2c:yyfill:enable = 0;\fP or
\fBre2c:yyfill:check = 0;\fP\&.
.UNINDENT
.sp
The following subsections contain an example of each method.
.SS Sentinel
.sp
This example uses a sentinel character to handle the end of input. The program
counts space\-separated words in a null\-terminated string. The sentinel is null:
it is the last character of each input string, and it is not allowed in the
middle of a lexeme by any of the rules (in particular, it is not included in
character ranges where it is easy to overlook). If a null occurs in the middle
of a string, it is a syntax error and the lexer will match default rule \fB*\fP,
but it won\(aqt read past the end of input or crash (use
\fI\%\-Wsentinel\-in\-midrule\fP
warning and \fBre2c:sentinel\fP configuration to verify this). Configuration
\fBre2c:yyfill:enable = 0;\fP suppresses the generation of bounds checks and
\fBYYFILL\fP invocations.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Main {
// Expects a null\-terminated string.
static int lex(String yyinput) {
int yycursor = 0;
int count = 0;
loop: while (true) {
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
* { return \-1; }
[\ex00] { return count; }
[a\-z]+ { count += 1; continue loop; }
[ ]+ { continue loop; }
*/
}
}
public static void main(String []args) {
assert lex(\(dq\e0\(dq) == 0;
assert lex(\(dqone two three\e0\(dq) == 3;
assert lex(\(dqf0ur\e0\(dq) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Sentinel with bounds checks
.sp
This example uses sentinel with bounds checks to handle the end of input (this
method was added in version 1.2). The program counts space\-separated
single\-quoted strings. The sentinel character is null, which is specified with
\fBre2c:eof = 0;\fP configuration. As in the \fI\%sentinel\fP method, null is the last
character of each input string, but it is allowed in the middle of a rule (for
example, \fB\(aqaaa\e0aa\(aq\e0\fP is valid input, but \fB\(aqaaa\e0\fP is a syntax error).
Bounds checks are generated in each state that matches an input character, but
they are scoped to the branch that handles null. Bounds checks are of the form
\fBYYLIMIT <= YYCURSOR\fP or \fBYYLESSTHAN(1)\fP with generic API. If the check
condition is true, lexer has reached the end of input and should stop
(\fBYYFILL\fP is disabled with \fBre2c:yyfill:enable = 0;\fP as the input fits into
one buffer, see the \fI\%YYFILL with sentinel\fP section for an example that uses
\fBYYFILL\fP). Reaching the end of input opens three possibilities: if the lexer
is in the initial state it will match the end\-of\-input rule \fB$\fP, otherwise it
may fallback to a previously matched rule (including default rule \fB*\fP) or go
to a default state, causing
\fI\%\-Wundefined\-control\-flow\fP\&.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Main {
// Expects a null\-terminated string.
static int lex(String yyinput) {
int yycursor = 0;
int yymarker = 0;
int yylimit = yyinput.length() \- 1; // yylimit points at the terminating null
int count = 0;
loop: while (true) {
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
re2c:eof = 0;
str = [\(aq] ([^\(aq\e\e] | [\e\e][^])* [\(aq];
* { return \-1; }
$ { return count; }
str { count += 1; continue loop; }
[ ]+ { continue loop; }
*/
}
}
public static void main(String []args) {
assert lex(\(dq\e0\(dq) == 0;
assert lex(\(dq\(aqqu\e0tes\(aq \(aqare\(aq \(aqfine: \e\e\(aq\(aq \e0\(dq) == 3;
assert lex(\(dq\(aqunterminated\e\e\(aq\e0\(dq) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Bounds checks with padding
.sp
This example uses bounds checks with padding to handle the end of input (this
method is enabled by default). The program counts space\-separated single\-quoted
strings. There is a padding of \fBYYMAXFILL\fP null characters appended at the end
of input, where \fBYYMAXFILL\fP value is autogenerated with a \fBmax\fP block. It
is not necessary to use null for padding \-\-\- any characters can be used as long
as they do not form a valid lexeme suffix (in this example padding should not
contain single quotes, as they may be mistaken for a suffix of a single\-quoted
string). There is a \(dqstop\(dq rule that matches the first padding character (null)
and terminates the lexer (note that it checks if null is at the beginning of
padding, otherwise it is a syntax error). Bounds checks are generated only in
some states that are determined by the strongly connected components of the
underlying automaton. Checks have the form \fB(YYLIMIT \- YYCURSOR) < n\fP or
\fBYYLESSTHAN(n)\fP with generic API, where \fBn\fP is the minimum number of
characters that are needed for the lexer to proceed (it also means that the next
bounds check will occur in at most \fBn\fP characters). If the check condition is
true, the lexer has reached the end of input and will invoke \fBYYFILL(n)\fP that
should either supply at least \fBn\fP input characters or not return. In this
example \fBYYFILL\fP always fails and terminates the lexer with an error (which is
fine because the input fits into one buffer). See the \fI\%YYFILL with padding\fP
section for an example that refills the input buffer with \fBYYFILL\fP\&.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Main {
/*!max:re2c*/
// Expects yymaxfill\-padded string.
static int lex(byte[] str) {
// Pad string with yymaxfill zeroes at the end.
byte[] yyinput = new byte[str.length + YYMAXFILL];
System.arraycopy(str, 0, yyinput, 0, str.length);
int yycursor = 0;
int yylimit = yyinput.length;
int count = 0;
loop: while (true) {
/*!re2c
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dqByte.toUnsignedInt(yyinput[yycursor])\(dq;
re2c:YYFILL = \(dqreturn \-1;\(dq;
str = [\(aq] ([^\(aq\e\e] | [\e\e][^])* [\(aq];
[\ex00] {
// Check that it is the sentinel, not some unexpected null.
return (yycursor \- 1 == str.length) ? count : \-1;
}
str { count += 1; continue loop; }
[ ]+ { continue loop; }
* { return \-1; }
*/
}
}
public static void main(String []args) {
assert lex(\(dq\(dq.getBytes()) == 0;
assert lex(\(dq\(aqqu\e0tes\(aq \(aqare\(aq \(aqfine: \e\e\(aq\(aq \(dq.getBytes()) == 3;
assert lex(\(dq\(aqunterminated\e\e\(aq\(dq.getBytes()) == \-1;
assert lex(\(dq\(aqunexpected \e00 null\e\e\(aq\(dq.getBytes()) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Custom checks
.sp
This example uses a custom end\-of\-input handling method based on generic API.
The program counts space\-separated single\-quoted strings. It is the same as the
\fI\%sentinel\fP example, except that the input is not null\-terminated. To cover up
for the absence of a sentinel character at the end of input, \fBYYPEEK\fP is
redefined to perform a bounds check before it reads the next input character.
This is inefficient because checks are done very often. If the check condition
fails, \fBYYPEEK\fP returns the real character, otherwise it returns a fake
sentinel character.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Main {
// Expects a string without terminating null.
static int lex(String str) {
byte[] yyinput = str.getBytes();
int yycursor = 0;
int count = 0;
loop: while (true) {
/*!re2c
re2c:api = generic;
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dq(yycursor < yyinput.length)\(dq
\(dq ? Byte.toUnsignedInt(yyinput[yycursor]) : 0\(dq;
re2c:YYSKIP = \(dqyycursor += 1;\(dq;
re2c:yyfill:enable = 0;
* { return \-1; }
[\ex00] { return count; }
[a\-z]+ { count += 1; continue loop; }
[ ]+ { continue loop; }
*/
}
}
public static void main(String []args) {
assert lex(\(dq\(dq) == 0;
assert lex(\(dqone two three\(dq) == 3;
assert lex(\(dqf0ur\(dq) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SH BUFFER REFILLING
.sp
The need for buffering arises when the input cannot be mapped in memory all at
once: either it is too large, or it comes in a streaming fashion (like reading
from a socket). The usual technique in such cases is to allocate a fixed\-sized
memory buffer and process input in chunks that fit into the buffer. When the
current chunk is processed, it is moved out and new data is moved in. In
practice it is somewhat more complex, because lexer state consists not of a
single input position, but a set of interrelated positions:
.INDENT 0.0
.IP \(bu 2
cursor: the next input character to be read (\fBYYCURSOR\fP in C pointer API or
\fBYYSKIP\fP/\fBYYPEEK\fP in generic API)
.IP \(bu 2
limit: the position after the last available input character (\fBYYLIMIT\fP in
C pointer API, implicitly handled by \fBYYLESSTHAN\fP in generic API)
.IP \(bu 2
marker: the position of the most recent match, if any (\fBYYMARKER\fP in default
API or \fBYYBACKUP\fP/\fBYYRESTORE\fP in generic API)
.IP \(bu 2
token: the start of the current lexeme (implicit in re2java API, as it is not
needed for the normal lexer operation and can be defined and updated by the
user)
.IP \(bu 2
context marker: the position of the trailing context (\fBYYCTXMARKER\fP in
C pointer API or \fBYYBACKUPCTX\fP/\fBYYRESTORECTX\fP in generic API)
.IP \(bu 2
tag variables: submatch positions (defined with \fBstags\fP and \fBmtags\fP blocks
and generic API primitives \fBYYSTAGP\fP/\fBYYSTAGN\fP/\fBYYMTAGP\fP/\fBYYMTAGN\fP)
.UNINDENT
.sp
Not all these are used in every case, but if used, they must be updated by
\fBYYFILL\fP\&. All active positions are contained in the segment between token and
cursor, therefore everything between buffer start and token can be discarded,
the segment from token and up to limit should be moved to the beginning of
buffer, and the free space at the end of buffer should be filled with new data.
In order to avoid frequent \fBYYFILL\fP calls it is best to fill in as many input
characters as possible (even though fewer characters might suffice to resume the
lexer). The details of \fBYYFILL\fP implementation are slightly different
depending on which EOF handling method is used: the case of EOF rule is somewhat
simpler than the case of bounds\-checking with padding. Also note that if
\fB\-f \-\-storable\-state\fP option is used, \fBYYFILL\fP has slightly different
semantics (described in the section about storable state).
.SS YYFILL with sentinel
.sp
If EOF rule is used, \fBYYFILL\fP is a function\-like primitive that accepts
no arguments and returns a value which is checked against zero. \fBYYFILL\fP
invocation is triggered by condition \fBYYLIMIT <= YYCURSOR\fP in C pointer API and
\fBYYLESSTHAN()\fP in generic API. A non\-zero return value means that \fBYYFILL\fP
has failed. A successful \fBYYFILL\fP call must supply at least one character and
adjust input positions accordingly. Limit must always be set to one after the
last input position in buffer, and the character at the limit position must be
the sentinel symbol specified by \fBre2c:eof\fP configuration. The pictures below
show the relative locations of input positions in buffer before and after
\fBYYFILL\fP call (sentinel symbol is marked with \fB#\fP, and the second picture
shows the case when there is not enough input to fill the whole buffer).
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
<\-\- shift \-\->
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-\-\-\-\-\-\-\-\-D#\-\-\-\-\-\-\-\-\-\-\-E\->
buffer token marker limit,
cursor
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-\-\-\-\-\-\-\-\-D\-\-\-\-\-\-\-\-\-\-\-\-E#\->
buffer, marker cursor limit
token
<\-\- shift \-\->
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-\-\-\-\-\-\-\-\-D#\-\-E (EOF)
buffer token marker limit,
cursor
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-\-\-\-\-\-\-\-\-D\-\-\-E#........
buffer, marker cursor limit
token
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here is an example of a program that reads input file \fBinput.txt\fP in chunks of
4096 bytes and uses EOF rule.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.io.*;
import java.nio.file.*;
class Lexer {
public static final int BUFSIZE = 4096;
private BufferedInputStream stream;
private byte[] yyinput;
private int yycursor;
private int yymarker;
private int yylimit;
private int token;
private boolean eof;
public Lexer(File file) throws FileNotFoundException {
stream = new BufferedInputStream(new FileInputStream(file));
// Sentinel at \(gayylimit\(ga offset is set to zero, which triggers YYFILL.
yyinput = new byte[BUFSIZE + 1];
yycursor = yymarker = yylimit = token = BUFSIZE;
eof = false;
}
private int fill() throws IOException {
if (eof) { return \-1; } // unexpected EOF
// Error: lexeme too long. In real life can reallocate a larger buffer.
if (token < 1) { return \-2; }
// Shift buffer contents (discard everything up to the current token).
System.arraycopy(yyinput, token, yyinput, 0, yylimit \- token);
yycursor \-= token;
yymarker \-= token;
yylimit \-= token;
token = 0;
// Fill free space at the end of buffer with new data from file.
yylimit += stream.read(yyinput, yylimit, BUFSIZE \- yylimit);
yyinput[yylimit] = 0; // append sentinel symbol
// If read less than expected, this is the end of input.
eof = yylimit < BUFSIZE;
return 0;
}
// Expects a null\-terminated string.
public int lex() throws IOException {
int count = 0;
loop: while (true) {
token = yycursor;
/*!re2c
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dqByte.toUnsignedInt(yyinput[yycursor])\(dq;
re2c:YYFILL = \(dqfill() == 0\(dq;
re2c:eof = 0;
str = [\(aq] ([^\(aq\e\e] | [\e\e][^])* [\(aq];
* { return \-1; }
$ { return count; }
str { count += 1; continue loop; }
[ ]+ { continue loop; }
*/
}
}
public static void main(String []args) throws FileNotFoundException, IOException {
String fname = \(dqinput\(dq;
String content = \(dq\(aqqu\e0tes\(aq \(aqare\(aq \(aqfine: \e\e\(aq\(aq \(dq.repeat(Lexer.BUFSIZE);
// Prepare input file: a few times the size of the buffer, containing
// strings with zeroes and escaped quotes.
Files.writeString(Paths.get(fname), content);
int count = 3 * Lexer.BUFSIZE; // number of quoted strings written to file
// Prepare lexer state: all offsets are at the end of buffer.
File file = new File(\(dq.\(dq, fname);
Lexer lexer = new Lexer(file);
// Run the lexer.
int n = lexer.lex();
assert n == count;
// Cleanup: remove input file.
file.delete();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS YYFILL with padding
.sp
In the default case (when EOF rule is not used) \fBYYFILL\fP is a function\-like
primitive that accepts a single argument and does not return any value.
\fBYYFILL\fP invocation is triggered by condition \fB(YYLIMIT \- YYCURSOR) < n\fP in
C pointer API and \fBYYLESSTHAN(n)\fP in generic API. The argument passed to
\fBYYFILL\fP is the minimal number of characters that must be supplied. If it
fails to do so, \fBYYFILL\fP must not return to the lexer (for that reason it is
best implemented as a macro that returns from the calling function on failure).
In case of a successful \fBYYFILL\fP invocation the limit position must be set
either to one after the last input position in buffer, or to the end of
\fBYYMAXFILL\fP padding (in case \fBYYFILL\fP has successfully read at least \fBn\fP
characters, but not enough to fill the entire buffer). The pictures below show
the relative locations of input positions in buffer before and after \fBYYFILL\fP
invocation (\fBYYMAXFILL\fP padding on the second picture is marked with \fB#\fP
symbols).
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
<\-\- shift \-\-> <\-\- need \-\->
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-D\-\-\-\-\-\-\-E\-\-\-F\-\-\-\-\-\-\-\-G\->
buffer token marker cursor limit
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-D\-\-\-\-\-\-\-E\-\-\-F\-\-\-\-\-\-\-\-G\->
buffer, marker cursor limit
token
<\-\- shift \-\-> <\-\- need \-\->
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-D\-\-\-\-\-\-\-E\-F (EOF)
buffer token marker cursor limit
>\-A\-\-\-\-\-\-\-\-\-\-\-\-B\-\-\-\-\-\-\-\-\-C\-\-\-\-\-D\-\-\-\-\-\-\-E\-F###############
buffer, marker cursor limit
token <\- YYMAXFILL \->
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here is an example of a program that reads input file \fBinput.txt\fP in chunks of
4096 bytes and uses bounds\-checking with padding.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.io.*;
import java.nio.file.*;
import java.util.Arrays;
class Lexer {
/*!max:re2c*/
public static final int BUFSIZE = 4096;
private BufferedInputStream stream;
private byte[] yyinput;
private int yycursor;
private int yylimit;
private int token;
private boolean eof;
public Lexer(File file) throws FileNotFoundException {
stream = new BufferedInputStream(new FileInputStream(file));
// Prepare lexer state: all offsets are at the end of buffer.
// This immediately triggers YYFILL, as the YYLESSTHAN condition is true.
yyinput = new byte[BUFSIZE + YYMAXFILL];
yycursor = yylimit = token = BUFSIZE;
eof = false;
}
private int fill(int need) throws IOException {
if (eof) { return \-1; } // unexpected EOF
// Error: lexeme too long. In real life can reallocate a larger buffer.
if (token < need) { return \-2; }
// Shift buffer contents (discard everything up to the current token).
System.arraycopy(yyinput, token, yyinput, 0, yylimit \- token);
yycursor \-= token;
yylimit \-= token;
token = 0;
// Fill free space at the end of buffer with new data from file.
yylimit += stream.read(yyinput, yylimit, BUFSIZE \- yylimit);
yyinput[yylimit] = 0; // append sentinel symbol
// If read less than expected, this is the end of input.
if (yylimit < BUFSIZE) {
eof = true;
Arrays.fill(yyinput, yylimit, yylimit + YYMAXFILL, (byte)0);
yylimit += YYMAXFILL;
}
return 0;
}
// Expects a null\-terminated string.
public int lex() throws IOException {
int count = 0;
loop: while (true) {
token = yycursor;
/*!re2c
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dqByte.toUnsignedInt(yyinput[yycursor])\(dq;
re2c:YYFILL = \(dqif (fill(@@) != 0) { return \-2; }\(dq;
str = [\(aq] ([^\(aq\e\e] | [\e\e][^])* [\(aq];
[\ex00] {
// Check that it is the sentinel, not some unexpected null.
return (token == yylimit \- YYMAXFILL) ? count : \-1;
}
str { count += 1; continue loop; }
[ ]+ { continue loop; }
* { return \-1; }
*/
}
}
public static void main(String []args) throws FileNotFoundException, IOException {
String fname = \(dqinput\(dq;
String content = \(dq\(aqqu\e0tes\(aq \(aqare\(aq \(aqfine: \e\e\(aq\(aq \(dq.repeat(Lexer.BUFSIZE);
// Prepare input file: a few times the size of the buffer, containing
// strings with zeroes and escaped quotes.
Files.writeString(Paths.get(fname), content);
int count = 3 * Lexer.BUFSIZE; // number of quoted strings written to file
// Prepare lexer state: all offsets are at the end of buffer.
File file = new File(\(dq.\(dq, fname);
Lexer lexer = new Lexer(file);
// Run the lexer.
int n = lexer.lex();
assert n == count;
// Cleanup: remove input file.
file.delete();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SH FEATURES
.SS Multiple blocks
.sp
Sometimes it is necessary to have multiple interrelated lexers (for example, if
there is a high\-level state machine that transitions between lexer modes). This
can be implemented using multiple connected re2java blocks. Another option is to
use \fI\%start conditions\fP\&.
.sp
The implementation of connections between blocks depends on the target language.
In languages that have \fBgoto\fP statement (such as C/C++ and Go) one can have
all blocks in one function, each of them prefixed with a label. Transition from
one block to another is a simple \fBgoto\fP\&.
In languages that do not have \fBgoto\fP (such as Rust) it is necessary to use a
loop with a switch on a state variable, similar to the \fByystate\fP loop/switch
generated by re2java, or else wrap each block in a function and use function calls.
.sp
The example below uses multiple blocks to parse binary, octal, decimal and
hexadecimal numbers. Each base has its own block. The initial block determines
base and dispatches to other blocks. Common configurations are defined in a
separate block at the beginning of the program; they are inherited by the other
blocks.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
class Parser {
private String yyinput;
private int yycursor;
private int yymarker;
private int number;
private void add_digit(int base, int offset) throws ArithmeticException {
number = Math.addExact(
Math.multiplyExact(number, base),
yyinput.charAt(yycursor \- 1) \- offset);
}
public int parse(String str) throws ArithmeticException, IllegalArgumentException {
yyinput = str;
yycursor = 0;
number = 0;
try {
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
end = \(dq\ex00\(dq;
\(aq0b\(aq / [01] { return parse_bin(); }
\(dq0\(dq { return parse_oct(); }
\(dq\(dq / [1\-9] { return parse_dec(); }
\(aq0x\(aq / [0\-9a\-fA\-F] { return parse_hex(); }
* { throw new IllegalArgumentException(\(dqnot a number\(dq); }
*/
} catch (Exception e) {
return \-1;
}
}
private int parse_bin() throws ArithmeticException, IllegalArgumentException {
/*!re2c
end { return number; }
[01] { add_digit(2, 48); return parse_bin(); }
* { throw new IllegalArgumentException(\(dqill\-formed binary number\(dq); }
*/
}
private int parse_oct() throws ArithmeticException, IllegalArgumentException {
/*!re2c
end { return number; }
[0\-7] { add_digit(8, 48); return parse_oct(); }
* { throw new IllegalArgumentException(\(dqill\-formed octal number\(dq); }
*/
}
private int parse_dec() throws ArithmeticException, IllegalArgumentException {
/*!re2c
end { return number; }
[0\-9] { add_digit(10, 48); return parse_dec(); }
* { throw new IllegalArgumentException(\(dqill\-formed decimal number\(dq); }
*/
}
private int parse_hex() throws ArithmeticException, IllegalArgumentException {
/*!re2c
end { return number; }
[0\-9] { add_digit(16, 48); return parse_hex(); }
[a\-f] { add_digit(16, 87); return parse_hex(); }
[A\-F] { add_digit(16, 55); return parse_hex(); }
* { throw new IllegalArgumentException(\(dqill\-formed hexadecimal number\(dq); }
*/
}
public static void main(String []args) {
Parser parser = new Parser();
assert parser.parse(\(dq1234567890\e0\(dq) == 1234567890;
assert parser.parse(\(dq0b1101\e0\(dq) == 0b1101;
assert parser.parse(\(dq0x007Fe\e0\(dq) == 0x7fe;
assert parser.parse(\(dq0644\e0\(dq) == 0644;
assert parser.parse(\(dq9999999999\e0\(dq) == \-1;
assert parser.parse(\(dq123??\e0\(dq) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Start conditions
.sp
Start conditions are enabled with \fB\-\-start\-conditions\fP option. They provide a
way to encode multiple interrelated automata within the same re2java block.
.sp
Each condition corresponds to a single automaton and has a unique name specified
by the user and a unique internal number defined by re2java\&. The numbers are used
to switch between conditions: the generated code uses \fBYYGETCOND\fP and
\fBYYSETCOND\fP primitives to get the current condition or set it to the
given number. Use \fBconditions\fP block, \fB\-\-header\fP option or \fBre2c:header\fP
configuration to generate numeric condition identifiers. Configuration
\fBre2c:cond:enumprefix\fP specifies the generated identifier prefix.
.sp
In condition mode every rule must be prefixed with a list of comma\-separated
condition names in angle brackets, or a wildcard \fB<*>\fP to denote all
conditions. The rule syntax is extended as follows:
.INDENT 0.0
.INDENT 3.5
.INDENT 0.0
.TP
.B \fB< condition\-list > regular\-expression code\fP
A rule that is merged to every condition on the \fBcondition\-list\fP\&.
It matches \fBregular\-expression\fP and executes the associated \fBcode\fP\&.
.TP
.B \fB< condition\-list > regular\-expression => condition code\fP
A rule that is merged to every condition on the \fBcondition\-list\fP\&.
It matches \fBregular\-expression\fP, sets the current condition to
\fBcondition\fP and executes the associated \fBcode\fP\&.
.TP
.B \fB< condition\-list > regular\-expression :=> condition\fP
A rule that is merged to every condition on the \fBcondition\-list\fP\&.
It matches \fBregular\-expression\fP and immediately transitions to
\fBcondition\fP (there is no semantic action).
.TP
.B \fB< condition\-list > !action code\fP
A rule that binds \fBcode\fP to the place defined by \fBaction\fP in every
condition on the \fBcondition\-list\fP (see the \fI\%actions\fP section for
various types of actions).
.TP
.B \fB<! condition\-list > code\fP
A rule that prepends \fBcode\fP to semantic actions of all rules for every
condition on the \fBcondition\-list\fP\&. This syntax is deprecated and the
\fB!pre_rule\fP action should be used instead (it does exactly the same).
.TP
.B \fB< > code\fP
A rule that creates a special entry condition with number zero and name
\fB\(dq0\(dq\fP that executes \fBcode\fP before jumping to other conditions.
This syntax is deprecated, and the \fB!entry\fP action should be used
instead (it provides a more fine\-grained control, as the code can be
specified on a per\-condition basis, and one can jump directly to
condition start without going through condition dispatch).
.TP
.B \fB< > => condition code\fP
Same as the previous rule, except that it sets the next \fBcondition\fP\&.
.TP
.B \fB< > :=> condition\fP
Same as the previous rule, except that it has no associated code and
immediately jumps to \fBcondition\fP\&.
.UNINDENT
.UNINDENT
.UNINDENT
.sp
The code re2java generates for conditions depends on whether re2java uses
goto/label approach or loop/switch approach to encode the automata.
.sp
In languages that have \fBgoto\fP statement (such as C/C++ and Go) conditions are
naturally implemented as blocks of code prefixed with labels of the form
\fByyc_<cond>\fP, where \fBcond\fP is a condition name (label prefix can be changed
with \fBre2c:cond:prefix\fP). Transitions between conditions are implemented using
\fBgoto\fP and condition labels. Before all conditions re2java generates an initial
switch on \fBYYGETSTATE\fP that jumps to the start state of the current condition.
The shortcut rules \fB:=>\fP bypass the initial switch and jump directly to the
specified condition (\fBre2c:cond:goto\fP can be used to change the default
behavior). The rules with semantic actions do not automatically jump to the next
condition; this should be done by the user\-defined action code.
.sp
In languages that do not have \fBgoto\fP (such as Rust) re2java reuses the
\fByystate\fP variable to store condition numbers. Each condition gets a numeric
identifier equal to the number of its start state, and a switch between
conditions is no different than a switch between DFA states of a single
condition. There is no need for a separate initial condition switch.
(Since the same approach is used to implement storable states,
\fBYYGETCOND\fP/\fBYYSETCOND\fP are redundant if both storable states and
conditions are used).
.sp
The program below uses start conditions to parse binary, octal, decimal and
hexadecimal numbers. There is a single block where each base has its own
condition, and the initial condition is connected to all of them. User\-defined
variable \fBcond\fP stores the current condition number; it is initialized to the
number of the initial condition generated with \fBconditions\fP block.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT \-c
class Parser {
/*!conditions:re2c*/
private String yyinput;
private int yycursor;
private int yymarker;
private int number;
private void add_digit(int base, int offset) throws ArithmeticException {
number = Math.addExact(
Math.multiplyExact(number, base),
yyinput.charAt(yycursor \- 1) \- offset);
}
public int parse(String str) throws ArithmeticException, IllegalArgumentException {
yyinput = str;
yycursor = 0;
int yycond = YYC_init;
number = 0;
try {
loop: while (true) {
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
<*> * { throw new IllegalArgumentException(\(dqill\-formed number\(dq); }
<init> \(aq0b\(aq / [01] :=> bin
<init> \(dq0\(dq :=> oct
<init> \(dq\(dq / [1\-9] :=> dec
<init> \(aq0x\(aq / [0\-9a\-fA\-F] :=> hex
<bin, oct, dec, hex> \(dq\ex00\(dq { return number; }
<bin> [01] { add_digit(2, 48); continue loop; }
<oct> [0\-7] { add_digit(8, 48); continue loop; }
<dec> [0\-9] { add_digit(10, 48); continue loop; }
<hex> [0\-9] { add_digit(16, 48); continue loop; }
<hex> [a\-f] { add_digit(16, 87); continue loop; }
<hex> [A\-F] { add_digit(16, 55); continue loop; }
*/
}
} catch (Exception e) {
return \-1;
}
}
public static void main(String []args) {
Parser parser = new Parser();
assert parser.parse(\(dq1234567890\e0\(dq) == 1234567890;
assert parser.parse(\(dq0b1101\e0\(dq) == 0b1101;
assert parser.parse(\(dq0x007Fe\e0\(dq) == 0x7fe;
assert parser.parse(\(dq0644\e0\(dq) == 0644;
assert parser.parse(\(dq9999999999\e0\(dq) == \-1;
assert parser.parse(\(dq123??\e0\(dq) == \-1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Storable state
.sp
With \fB\-\-storable\-state\fP option re2java generates a lexer that can store
its current state, return to the caller, and later resume operations exactly
where it left off. The default mode of operation in re2java is a \(dqpull\(dq model,
in which the lexer \(dqpulls\(dq more input whenever it needs it. This may be
unacceptable in cases when the input becomes available piece by piece (for
example, if the lexer is invoked by the parser, or if the lexer program
communicates via a socket protocol with some other program that must wait for a
reply from the lexer before it transmits the next message). Storable state
feature is intended exactly for such cases: it allows one to generate lexers that
work in a \(dqpush\(dq model. When the lexer needs more input, it stores its state and
returns to the caller. Later, when more input becomes available, the caller
resumes the lexer exactly where it stopped. There are a few changes necessary
compared to the \(dqpull\(dq model:
.INDENT 0.0
.IP \(bu 2
Define \fBYYSETSTATE()\fP and \fBYYGETSTATE(state)\fP primitives.
.IP \(bu 2
Define \fByych\fP, \fByyaccept\fP (if used) and \fBstate\fP variables as a part of
persistent lexer state. The \fBstate\fP variable should be initialized to \fB\-1\fP\&.
.IP \(bu 2
\fBYYFILL\fP should return to the outer program instead of trying to supply more
input. Return code should indicate that lexer needs more input.
.IP \(bu 2
The outer program should recognize situations when lexer needs more input and
respond appropriately.
.IP \(bu 2
Optionally use \fBgetstate\fP block to generate \fBYYGETSTATE\fP switch detached
from the main lexer. This only works for languages that have \fBgoto\fP (not in
\fB\-\-loop\-switch\fP mode).
.IP \(bu 2
Use \fBre2c:eof\fP and the \fI\%sentinel with bounds checks\fP method to handle the
end of input. Padding\-based method may not work because it is unclear when to
append padding: the current end of input may not be the ultimate end of input,
and appending padding too early may cut off a partially read greedy lexeme.
Furthermore, due to high\-level program logic getting more input may depend on
processing the lexeme at the end of buffer (which already is blocked due to
the end\-of\-input condition).
.UNINDENT
.sp
Here is an example of a \(dqpush\(dq model lexer that simulates reading packets from a
socket. The lexer loops until it encounters the end of input and returns to the
calling function. The calling function provides more input by \(dqsending\(dq the next
packet and resumes lexing. This process stops when all the packets have been
sent, or when there is an error.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT \-f
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.channels.Pipe;
class Lexer {
enum Status {
END,
READY,
WAITING,
BIG_PACKET,
BAD_PACKET
};
// Use a small buffer to cover the case when a lexeme doesn\(aqt fit.
// In real world use a larger buffer.
public static final int BUFSIZE = 10;
public static class State {
Pipe.SourceChannel source;
byte[] yyinput;
int yycursor;
int yymarker;
int yylimit;
int token;
int yystate;
int received;
public State(Pipe pipe) {
source = pipe.source();
// Sentinel at \(gayylimit\(ga offset is set to zero, which triggers YYFILL.
yyinput = new byte[BUFSIZE + 1];
yycursor = yymarker = yylimit = token = BUFSIZE;
yystate = \-1;
received = 0;
}
}
private static void log(String format, Object... args) {
if (false) { System.out.printf(format + \(dq\en\(dq, args); }
}
private static Status fill(State st) throws IOException {
// Error: lexeme too long. In real life can reallocate a larger buffer.
if (st.token < 1) { return Status.BIG_PACKET; }
// Shift buffer contents (discard everything up to the current token).
System.arraycopy(st.yyinput, st.token, st.yyinput, 0, st.yylimit \- st.token);
st.yycursor \-= st.token;
st.yymarker \-= st.token;
st.yylimit \-= st.token;
st.token = 0;
// Fill free space at the end of buffer with new data from file.
ByteBuffer buffer = ByteBuffer.wrap(st.yyinput, st.yylimit, BUFSIZE \- st.yylimit);
int have = st.source.read(buffer);
if (have != \-1) st.yylimit += have; // \-1 means that pipe is closed
st.yyinput[st.yylimit] = 0; // append sentinel symbol
return Status.READY;
}
private static Status lex(State yyrecord) {
int yych;
loop: while (true) {
yyrecord.token = yyrecord.yycursor;
/*!re2c
re2c:api = record;
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dqByte.toUnsignedInt(yyrecord.yyinput[yyrecord.yycursor])\(dq;
re2c:YYFILL = \(dqreturn Status.WAITING;\(dq;
re2c:eof = 0;
packet = [a\-z]+[;];
* { return Status.BAD_PACKET; }
$ { return Status.END; }
packet { yyrecord.received += 1; continue loop; }
*/
}
}
public static void test(String[] packets, Status expect) throws IOException {
// Create a pipe.
Pipe pipe = Pipe.open();
Pipe.SinkChannel sink = pipe.sink();
// Initialize lexer state
Lexer.State st = new Lexer.State(pipe);
// Main loop. The buffer contains incomplete data which appears packet by
// packet. When the lexer needs more input it saves its internal state and
// returns to the caller which should provide more input and resume lexing.
int send = 0;
Status status;
while (true) {
status = lex(st);
if (status == Status.END) {
log(\(dqdone: got %d packets\(dq, st.received);
break;
} else if (status == Status.WAITING) {
log(\(dqwaiting...\(dq);
if (send < packets.length) {
log(\(dqsent packet %d: %s\(dq, send, packets[send]);
ByteBuffer buffer = ByteBuffer.wrap(packets[send].getBytes());
sink.write(buffer);
send += 1;
} else {
sink.close();
}
status = fill(st);
if (status == Status.BIG_PACKET) {
log(\(dqerror: packet too big\(dq);
break;
}
assert status == Status.READY;
} else {
assert status == Status.BAD_PACKET;
log(\(dqerror: ill\-formed packet\(dq);
break;
}
}
// Check results.
assert status == expect;
if (status == Status.END) {
assert send == st.received;
}
}
public static void main(String []args) throws IOException {
test(new String[]{}, Status.END);
test(new String[]{\(dqzero;\(dq, \(dqone;\(dq, \(dqtwo;\(dq, \(dqthree;\(dq, \(dqfour;\(dq}, Status.END);
test(new String[]{\(dqzer0;\(dq}, Status.BAD_PACKET);
test(new String[]{\(dqgoooooooooogle;\(dq}, Status.BIG_PACKET);
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Reusable blocks
.sp
Reusable blocks of the form \fB/*!rules:re2c[:<name>] ... */\fP or
\fB%{rules[:<name>] ... %}\fP can be reused any number of times and combined with
other re2java blocks. The \fB<name>\fP is optional. A rules block can be used in a
\fBuse\fP block or directive. The code for a rules block is generated at every
point of use.
.sp
Use blocks are defined with \fB/*!use:re2c[:<name>] ... */\fP or
\fB%{use[:<name>] ... %}\fP\&. The \fB<name>\fP is optional: if it\(aqs not specified,
the associated rules block is the most recent one (whether named or unnamed).
A use block can add named definitions, configurations and rules of its own.
An important use case for use blocks is a lexer that supports multiple input
encodings: the same rules block is reused multiple times with encoding\-specific
configurations (see the example below).
.sp
In\-block use directive \fB!use:<name>;\fP can be used from inside of a re2java
block. It merges the referenced block \fB<name>\fP into the current one. If some
of the merged rules and configurations overlap with the previously defined ones,
conflicts are resolved in the usual way: the earliest rule takes priority, and
latest configuration overrides preceding ones. One exception are the special
rules \fB*\fP, \fB$\fP and (in condition mode) \fB<!>\fP, for which a block\-local
definition overrides any inherited ones. Use directive allows one to combine
different re2java blocks together in one block (see the example below).
.sp
Named blocks and in\-block use directive were added in re2java version 2.2.
Since that version reusable blocks are allowed by default (no special option
is needed). Before version 2.2 reuse mode was enabled with \fB\-r \-\-reusable\fP
option. Before version 1.2 reusable blocks could not be mixed with normal
blocks.
.SS Example of a \fB!use\fP directive
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
// This example shows how to combine reusable re2c blocks: two blocks
// (\(aqcolors\(aq and \(aqfish\(aq) are merged into one. The \(aqsalmon\(aq rule occurs
// in both blocks; the \(aqfish\(aq block takes priority because it is used
// earlier. Default rule * occurs in all three blocks; the local (not
// inherited) definition takes priority.
/*!rules:re2c:colors
* { throw new IllegalArgumentException(\(dqah\(dq); }
\(dqred\(dq | \(dqsalmon\(dq | \(dqmagenta\(dq { return Ans.COLOR; }
*/
/*!rules:re2c:fish
* { throw new IllegalArgumentException(\(dqoh\(dq); }
\(dqhaddock\(dq | \(dqsalmon\(dq | \(dqeel\(dq { return Ans.FISH; }
*/
class Main {
enum Ans {COLOR, FISH, DUNNO};
static Ans lex(String yyinput) { // no\-throw, as \(aq*\(aq rules are overridden
int yycursor = 0;
int yymarker = 0;
/*!re2c
re2c:yyfill:enable = 0;
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
!use:fish;
!use:colors;
* { return Ans.DUNNO; } // overrides inherited \(aq*\(aq rules
*/
}
public static void main(String []args) {
assert lex(\(dqsalmon\(dq) == Ans.FISH;
assert lex(\(dqwhat?\(dq) == Ans.DUNNO;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Example of a \fB/*!use:re2c ... */\fP block
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT \-\-input\-encoding utf8
// This example supports multiple input encodings: UTF\-8 and UTF\-32.
// Both lexers are generated from the same rules block, and the use
// blocks add only encoding\-specific configurations.
/*!rules:re2c
re2c:yyfill:enable = 0;
re2c:YYPEEK = \(dqyyinput[yycursor]\(dq;
re2c:indent:top = 1;
\(dq∀x ∃y\(dq { return true; }
* { return false; }
*/
class Main {
static boolean lex_utf8(int[] yyinput) {
int yycursor = 0;
int yymarker = 0;
/*!use:re2c
re2c:YYCTYPE = \(dqint\(dq; // Java lacks unsigned 8\-bit integer type
re2c:encoding:utf8 = 1;
*/
}
static boolean lex_utf32(int[] yyinput) {
int yycursor = 0;
int yymarker = 0;
/*!use:re2c
re2c:YYCTYPE = \(dqint\(dq;
re2c:encoding:utf32 = 1;
*/
}
public static void main(String []args) {
// we have to use \(gaint\(ga, because \(gabyte\(gain Java cannot represent values greater than 127
int[] s_utf8 = new int[]{0xe2, 0x88, 0x80, 0x78, 0x20, 0xe2, 0x88, 0x83, 0x79};
assert lex_utf8(s_utf8);
int[] s_utf32 = new int[]{0x2200, 0x78, 0x20, 0x2203, 0x79};
assert lex_utf32(s_utf32);
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Submatch extraction
.sp
re2java has two options for submatch extraction.
.INDENT 0.0
.TP
.B \fBTags\fP
The first option is to use standalone \fItags\fP of the form \fB@stag\fP or
\fB#mtag\fP, where \fBstag\fP and \fBmtag\fP are arbitrary used\-defined names.
Tags are enabled with \fB\-T \-\-tags\fP option or \fBre2c:tags = 1\fP
configuration. Semantically tags are position markers: they can be
inserted anywhere in a regular expression, and they bind to the
corresponding position (or multiple positions) in the input string.
\fIS\-tags\fP bind to the last matching position, and \fIm\-tags\fP bind to a list of
positions (they may be used in repetition subexpressions, where a single
position in a regular expression corresponds to multiple positions in the
input string). All tags should be defined by the user, either manually or
with the help of \fBsvars\fP and \fBmvars\fP blocks. If there is more than one
way tags can be matched against the input, ambiguity is resolved using
leftmost greedy disambiguation strategy.
.TP
.B \fBCaptures\fP
The second option is to use \fIcapturing groups\fP\&. They are enabled with
\fB\-\-captures\fP option or \fBre2c:captures = 1\fP configuration. There are two
flavours for different disambiguation policies, \fB\-\-leftmost\-captures\fP
(the default) is for leftmost greedy policy, and, \fB\-\-posix\-captures\fP is
for POSIX longest\-match policy. In this mode all parenthesized
subexpressions are considered capturing groups, and a bang can be used to
mark non\-capturing groups: \fB(! ... )\fP\&. With \fB\-\-invert\-captures\fP option or
\fBre2c:invert\-captures = 1\fP configuration the meaning of bang is inverted.
The number of groups for the matching rule is stored in a variable
\fByynmatch\fP (the whole regular expression is group number zero), and
submatch results are stored in \fByypmatch\fP array. Both \fByynmatch\fP and
\fByypmatch\fP should be defined by the user, and \fByypmatch\fP size must be at
least \fB[yynmatch * 2]\fP\&. Use \fBmaxnmatch\fP block to define \fBYYMAXNMATCH\fP,
a constant that equals to the maximum value of \fByynmatch\fP among all rules.
.TP
.B \fBCaptvars\fP
Another way to use capturing groups is the \fB\-\-captvars\fP option or
\fBre2c:captvars = 1\fP configuration. The only difference with \fB\-\-captures\fP
is in the way the generated code stores submatch results: instead of
\fByynmatch\fP and \fByypmatch\fP re2java generates variables \fByytl<k>\fP and
\fByytr<k>\fP for \fIk\fP\-th capturing group (the user should declare these using
an \fBsvars\fP block). Captures with variables support two disambiguation
policies: \fB\-\-leftmost\-captvars\fP or \fBre2c:leftmost\-captvars = 1\fP for
leftmost greedy policy (the default one) and \fB\-\-posix\-captvars\fP or
\fBre2c:posix\-captvars\fP for POSIX longest\-match policy.
.UNINDENT
.sp
Under the hood all these options translate into tags and
\fI\%Tagged Deterministic Finite Automata with Lookahead\fP\&.
The core idea of TDFA is to minimize the overhead on submatch extraction.
In the extreme, if there\(aqre no tags or captures in a regular expression, TDFA is
just an ordinary DFA. If the number of tags is moderate, the overhead is barely
noticeable. The generated TDFA uses a number of \fItag variables\fP which do not map
directly to tags: a single variable may be used for different tags, and a tag
may require multiple variables to hold all its possible values. Eventually
ambiguity is resolved, and only one final variable per tag survives. Tag
variables should be defined using \fBstags\fP or \fBmtags\fP blocks. If lexer state
is stored, tag variables should be part of it. They also need to be updated by
\fBYYFILL\fP\&.
.sp
S\-tags support the following operations:
.INDENT 0.0
.IP \(bu 2
save input position to an s\-tag: \fBt = YYCURSOR\fP with C pointer API or a
user\-defined operation \fBYYSTAGP(t)\fP with generic API
.IP \(bu 2
save default value to an s\-tag: \fBt = NULL\fP with C pointer API or a
user\-defined operation \fBYYSTAGN(t)\fP with generic API
.IP \(bu 2
copy one s\-tag to another: \fBt1 = t2\fP
.UNINDENT
.sp
M\-tags support the following operations:
.INDENT 0.0
.IP \(bu 2
append input position to an m\-tag: a user\-defined operation \fBYYMTAGP(t)\fP
with both default and generic API
.IP \(bu 2
append default value to an m\-tag: a user\-defined operation \fBYYMTAGN(t)\fP
with both default and generic API
.IP \(bu 2
copy one m\-tag to another: \fBt1 = t2\fP
.UNINDENT
.sp
S\-tags can be implemented as scalar values (pointers or offsets). M\-tags need a
more complex representation, as they need to store a sequence of tag values. The
most naive and inefficient representation of an m\-tag is a list (array, vector)
of tag values; a more efficient representation is to store all m\-tags in a
prefix\-tree represented as array of nodes \fB(v, p)\fP, where \fBv\fP is tag value
and \fBp\fP is a pointer to parent node.
.sp
Here is a simple example of using s\-tags to parse semantic versions consisting
of three numeric components: major, minor, patch (the latter is optional).
See below for a more complex example that uses \fBYYFILL\fP\&.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.util.Optional;
class Main {
static class SemVer {
int major;
int minor;
int patch;
public SemVer(int m, int n, int k) {
major = m;
minor = n;
patch = k;
}
public boolean equals(SemVer v) {
return major == v.major && minor == v.minor && patch == v.patch;
}
};
static Optional<SemVer> parse(String yyinput) {
int yycursor = 0;
int yymarker = 0;
// Final tag variables available in semantic action.
/*!svars:re2c format = \(dqint @@;\(dq; */
// Intermediate tag variables used by the lexer (must be autogenerated).
/*!stags:re2c format = \(dqint @@ = \-1;\(dq; */
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
re2c:tags = 1;
num = [0\-9]+;
@t1 num @t2 \(dq.\(dq @t3 num @t4 (\(dq.\(dq @t5 num)? [\ex00] {
int major = Integer.valueOf(yyinput.substring(t1, t2));
int minor = Integer.valueOf(yyinput.substring(t3, t4));
int patch = (t5 == \-1) ? 0 : Integer.valueOf(yyinput.substring(t5, yycursor \- 1));
return Optional.of(new SemVer(major, minor, patch));
}
* { return Optional.empty(); }
*/
}
public static void main(String []args) {
assert parse(\(dq23.34\e0\(dq).get().equals(new SemVer(23, 34, 0));
assert parse(\(dq1.2.99999\e0\(dq).get().equals(new SemVer(1, 2, 99999));
assert !parse(\(dq1.a\e0\(dq).isPresent();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here is a more complex example of using s\-tags with \fBYYFILL\fP to parse a file
with newline\-separated semantic versions. Tag variables are part of the lexer
state, and they are adjusted in \fBYYFILL\fP like other input positions.
Note that it is necessary for s\-tags because their values are invalidated after
shifting buffer contents. It may not be necessary in a custom implementation
where tag variables store offsets relative to the start of the input string
rather than the buffer, which may be the case with m\-tags.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.io.*;
import java.nio.file.*;
import java.util.*;
class Lexer {
static class SemVer {
int major;
int minor;
int patch;
public SemVer(int m, int n, int k) {
major = m;
minor = n;
patch = k;
}
public boolean equals(SemVer v) {
return major == v.major && minor == v.minor && patch == v.patch;
}
};
public static final int BUFSIZE = 4096;
private BufferedInputStream stream;
private byte[] yyinput;
private int yycursor;
private int yymarker;
private int yylimit;
private int token;
// Intermediate tag variables used by the lexer (must be autogenerated).
/*!stags:re2c format = \(dqprivate int @@;\en\(dq; */
private boolean eof;
public Lexer(File file) throws FileNotFoundException {
stream = new BufferedInputStream(new FileInputStream(file));
// Sentinel at \(gayylimit\(ga offset is set to zero, which triggers YYFILL.
yyinput = new byte[BUFSIZE + 1];
yycursor = yymarker = yylimit = token = BUFSIZE;
/*!stags:re2c format = \(dq@@ = \-1;\en\(dq; */
eof = false;
}
private int fill() throws IOException {
if (eof) { return \-1; } // unexpected EOF
// Error: lexeme too long. In real life can reallocate a larger buffer.
if (token < 1) { return \-2; }
// Shift buffer contents (discard everything up to the current token).
System.arraycopy(yyinput, token, yyinput, 0, yylimit \- token);
yycursor \-= token;
yymarker \-= token;
yylimit \-= token;
/*!stags:re2c format = \(dqif (@@ != \-1) {@@ \-= token;}\en\(dq; */
token = 0;
// Fill free space at the end of buffer with new data from file.
yylimit += stream.read(yyinput, yylimit, BUFSIZE \- yylimit);
yyinput[yylimit] = 0; // append sentinel symbol
// If read less than expected, this is the end of input.
eof = yylimit < BUFSIZE;
return 0;
}
private int readInt(int tag1, int tag2) {
int n = 0;
for (int i = tag1; i < tag2; ++i) { n = n * 10 + (yyinput[i] \- 48); }
return n;
}
public Optional<ArrayList<SemVer>> lex() throws IOException {
ArrayList<SemVer> vers = new ArrayList<SemVer>();
// Final tag variables available in semantic action.
/*!svars:re2c format = \(dqint @@;\(dq; */
loop: while (true) {
token = yycursor;
/*!re2c
re2c:YYCTYPE = \(dqint\(dq;
re2c:YYPEEK = \(dqByte.toUnsignedInt(yyinput[yycursor])\(dq;
re2c:YYFILL = \(dqfill() == 0\(dq;
re2c:eof = 0;
re2c:tags = 1;
num = [0\-9]+;
@t1 num @t2 \(dq.\(dq @t3 num @t4 (\(dq.\(dq @t5 num)? [\en] {
int major = readInt(t1, t2);
int minor = readInt(t3, t4);
int patch = (t5 == \-1) ? 0 : readInt(t5, yycursor \- 1);
vers.add(new SemVer(major, minor, patch));
continue loop;
}
$ { return Optional.of(vers); }
* { return Optional.empty(); }
*/
}
}
public static void main(String []args) throws FileNotFoundException, IOException {
String fname = \(dqinput\(dq;
String content = \(dq1.22.333\en\(dq.repeat(Lexer.BUFSIZE);
// Prepare input file: a few times the size of the buffer, containing
// strings with zeroes and escaped quotes.
Files.writeString(Paths.get(fname), content);
// Prepare lexer state: all offsets are at the end of buffer.
File file = new File(\(dq.\(dq, fname);
Lexer lexer = new Lexer(file);
// Run the lexer.
Optional<ArrayList<SemVer>> vers = lexer.lex();
// Check results.
assert vers.isPresent() && vers.get().size() == BUFSIZE;
SemVer v = new SemVer(1, 22, 333);
for (int i = 0; i < BUFSIZE; ++i) {
assert vers.get().get(i).equals(v);
}
// Cleanup: remove input file.
file.delete();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here is an example of using capturing groups to parse semantic versions.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.util.Optional;
class Main {
static class SemVer {
int major;
int minor;
int patch;
public SemVer(int m, int n, int k) {
major = m;
minor = n;
patch = k;
}
public boolean equals(SemVer v) {
return major == v.major && minor == v.minor && patch == v.patch;
}
};
static Optional<SemVer> parse(String yyinput) {
int yycursor = 0;
int yymarker = 0;
// Final tag variables available in semantic action.
/*!svars:re2c format = \(dqint @@;\(dq; */
// Intermediate tag variables used by the lexer (must be autogenerated).
/*!stags:re2c format = \(dqint @@ = \-1;\(dq; */
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
re2c:captvars = 1;
num = [0\-9]+;
(num) \(dq.\(dq (num) (\(dq.\(dq num)? [\ex00] {
int major = Integer.valueOf(yyinput.substring(yytl1, yytr1));
int minor = Integer.valueOf(yyinput.substring(yytl2, yytr2));
int patch = (yytl3 == \-1) ? 0
: Integer.valueOf(yyinput.substring(yytl3 + 1, yytr3));
return Optional.of(new SemVer(major, minor, patch));
}
* { return Optional.empty(); }
*/
}
public static void main(String []args) {
assert parse(\(dq23.34\e0\(dq).get().equals(new SemVer(23, 34, 0));
assert parse(\(dq1.2.99999\e0\(dq).get().equals(new SemVer(1, 2, 99999));
assert !parse(\(dq1.a\e0\(dq).isPresent();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.sp
Here is an example of using m\-tags to parse a version with a variable number of
components. Tag variables are stored in a trie.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
import java.util.*;
class Main {
static Optional<int[]> parse(String yyinput) {
int yycursor = 0;
int yymarker = 0;
// Final tag variables available in semantic action.
/*!svars:re2c format = \(dqint @@;\(dq; */
/*!mvars:re2c format = \(dqList<Integer> @@;\(dq; */
// Intermediate tag variables used by the lexer (must be autogenerated).
/*!stags:re2c format = \(dqint @@ = \-1;\(dq; */
/*!mtags:re2c format = \(dqList<Integer> @@ = new ArrayList<>();\(dq; */
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:YYMTAGP = \(dq@@.add(yycursor);\(dq;
re2c:YYMTAGN = \(dq\(dq; // do nothing
re2c:yyfill:enable = 0;
re2c:tags = 1;
num = [0\-9]+;
@t1 num @t2 (\(dq.\(dq #t3 num #t4)* [\ex00] {
int[] vers = new int[t3.size() + 1];
vers[0] = Integer.valueOf(yyinput.substring(t1, t2));
for (int i = 0; i < t3.size(); ++i) {
vers[i + 1] = Integer.valueOf(yyinput.substring(t3.get(i), t4.get(i)));
}
return Optional.of(vers);
}
* { return Optional.empty(); }
*/
}
public static void main(String []args) {
assert Arrays.equals(parse(\(dq1\e0\(dq).get(), new int[]{1});
assert Arrays.equals(parse(\(dq1.2.3.4.5.6.7\e0\(dq).get(), new int[]{1, 2, 3, 4, 5, 6, 7});
assert !parse(\(dq1.2.\e0\(dq).isPresent();
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Encoding support
.sp
It is necessary to understand the difference between \fBcode points\fP and
\fBcode units\fP\&. A code point is a numeric identifier of a symbol. A code unit is
the smallest unit of storage in the encoded text. A single code point may be
represented with one or more code units. In a fixed\-length encoding all code
points are represented with the same number of code units. In a variable\-length
encoding code points may be represented with a different number of code units.
Note that the \(dqany\(dq rule \fB[^]\fP matches any code point, but not necessarily
any code unit (the only way to match any code unit regardless of the encoding
is the default rule \fB*\fP).
The generated lexer works with a stream of code units: \fByych\fP stores a code
unit, and \fBYYCTYPE\fP is the code unit type. Regular expressions, on the other
hand, are specified in terms of code points. When re2java compiles regular
expressions to automata it translates code points to code units. This is
generally not a simple mapping: in variable\-length encodings a single code point
range may get translated to a complex code unit graph.
The following encodings are supported:
.INDENT 0.0
.IP \(bu 2
\fBASCII\fP (enabled by default). It is a fixed\-length encoding with code space
\fB[0\-255]\fP and 1\-byte code points and code units.
.IP \(bu 2
\fBEBCDIC\fP (enabled with \fB\-\-ebcdic\fP or \fBre2c:encoding:ebcdic\fP). It is a
fixed\-length encoding with code space \fB[0\-255]\fP and 1\-byte code points and
code units.
.IP \(bu 2
\fBUCS2\fP (enabled with \fB\-\-ucs2\fP or \fBre2c:encoding:ucs2\fP). It is a
fixed\-length encoding with code space \fB[0\-0xFFFF]\fP and 2\-byte code points
and code units.
.IP \(bu 2
\fBUTF8\fP (enabled with \fB\-\-utf8\fP or \fBre2c:encoding:utf8\fP). It is a
variable\-length Unicode encoding. Code unit size is 1 byte. Code points are
represented with 1 \-\- 4 code units.
.IP \(bu 2
\fBUTF16\fP (enabled with \fB\-\-utf16\fP or \fBre2c:encoding:utf16\fP). It is a
variable\-length Unicode encoding. Code unit size is 2 bytes. Code points are
represented with 1 \-\- 2 code units.
.IP \(bu 2
\fBUTF32\fP (enabled with \fB\-\-utf32\fP or \fBre2c:encoding:utf32\fP). It is a
fixed\-length Unicode encoding with code space \fB[0\-0x10FFFF]\fP and 4\-byte code
points and code units.
.UNINDENT
.sp
Include file \fBinclude/unicode_categories.re\fP provides re2java definitions for the
standard Unicode categories.
.sp
Option \fB\-\-input\-encoding\fP specifies source file encoding, which can be used to
enable Unicode literals in regular expressions. For example
\fB\-\-input\-encoding utf8\fP tells re2java that the source file is in UTF8 (it differs
from \fB\-\-utf8\fP which sets input text encoding). Option \fB\-\-encoding\-policy\fP
specifies the way re2java handles Unicode surrogates (code points in range
\fB[0xD800\-0xDFFF]\fP).
.sp
Below is an example of a lexer for UTF8 encoded Unicode identifiers.
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT \-\-utf8 \-s
/*!include:re2c \(dqunicode_categories.re\(dq */
class Main {
static boolean lex(String yyinput) {
int yycursor = 0;
int yymarker = 0;
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
// Simplified \(dqUnicode Identifier and Pattern Syntax\(dq
// (see https://unicode.org/reports/tr31)
id_start = L | Nl | [$_];
id_continue = id_start | Mn | Mc | Nd | Pc | [\eu200D\eu05F3];
identifier = id_start+;
// It should be \(gaid_start id_continue*\(ga, but that causes \(gaerror: code too large\(ga
identifier { return true; }
* { return false; }
*/
}
public static void main(String []args) {
assert lex(\(dq_Ыдентификатор\e0\(dq);
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Include files
.sp
re2java allows one to include other files using a block of the form
\fB/*!include:re2c FILE */\fP or \fB%{include FILE %}\fP, or an in\-block directive
\fB!include FILE ;\fP, where \fBFILE\fP is a path to the file to be included.
re2java looks for include files in the directory of the including file and in
include locations, which can be specified with the \fB\-I\fP option. Include
blocks/directives in re2java work in the same way as C/C++ \fB#include\fP: \fBFILE\fP
contents are copy\-pasted verbatim in place of the block/directive. Include files
may have further includes of their own. Use \fB\-\-depfile\fP option to track build
dependencies of the output file on include files.
re2java provides some predefined include files that can be found in the
\fBinclude/\fP subdirectory of the project. These files contain definitions that
may be useful to other projects (such as Unicode categories) and form something
like a standard library for re2java\&. Below is an example of using include files.
.SS Include file 1 (definitions.java)
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
/*!re2c
number = [1\-9][0\-9]*;
*/
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Include file 2 (extra_rules.re.inc)
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// floating\-point numbers
frac = [0\-9]* \(dq.\(dq [0\-9]+ | [0\-9]+ \(dq.\(dq;
exp = \(aqe\(aq [+\-]? [0\-9]+;
float = frac exp? | [0\-9]+ exp;
float { return Num.FLOAT; }
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Input file
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT
/*!include:re2c \(dqdefinitions.java\(dq */
class Main {
enum Num {INT, FLOAT, NAN};
static Num lex(String yyinput) {
int yycursor = 0;
int yymarker = 0;
/*!re2c
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyinput.charAt(yycursor)\(dq;
re2c:yyfill:enable = 0;
* { return Num.NAN; }
number { return Num.INT; }
!include \(dqextra_rules.re.inc\(dq;
*/
}
public static void main(String []args) {
assert lex(\(dq123\e0\(dq) == Num.INT;
assert lex(\(dq123.4567\e0\(dq) == Num.FLOAT;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Header files
.sp
re2java allows one to generate header file from the input \fB\&.re\fP file using
\fB\-\-header\fP option or \fBre2c:header\fP configuration and block pairs of the form
\fB/*!header:re2c:on*/\fP and \fB/*!header:re2c:off*/\fP, or \fB%{header:on%}\fP and
\fB%{header:off%}\fP\&. The first block marks the beginning of header file, and the
second block marks the end of it. Everything between these blocks is processed by
re2java, and the generated code is written to the file specified with \fB\-\-header\fP
option or \fBre2c:header\fP configuration (or \fBstdout\fP if neither option nor
configuration is used). Autogenerated header file may be needed in cases when
re2java is used to generate definitions that must be visible from other
translation units.
.sp
Here is an example of generating a header file that contains definition of the
lexer state with tag variables (the number variables depends on the regular
grammar and is unknown to the programmer).
.SS Input file
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// re2java $INPUT \-o $OUTPUT \-\-header lexer/state.java
package headers;
import headers.lexer.State;
/*!header:re2c:on*/
package headers.lexer;
public class State {
public String yyinput;
public int yycursor;
/*!stags:re2c format = \(dqpublic int @@;\en\(dq; */
public State(String str) {
yyinput = str;
yycursor = 0;
/*!stags:re2c format = \(dq@@ = 0;\en\(dq; */
}
};
/*!header:re2c:off*/
class Main {
static int lex(String str) {
State yyrecord = new State(str);
int t;
/*!re2c
re2c:api = record;
re2c:tags = 1;
re2c:yyfill:enable = 0;
re2c:YYCTYPE = \(dqchar\(dq;
re2c:YYPEEK = \(dqyyrecord.yyinput.charAt(yyrecord.yycursor)\(dq;
re2c:header = \(dqlexer/state.java\(dq;
[a]* @t [b]* { return t; }
*/
}
public static void main(String []args) {
assert lex(\(dqab\e0\(dq) == 1;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Header file
.INDENT 0.0
.INDENT 3.5
.sp
.nf
.ft C
// Generated by re2c
package headers.lexer;
public class State {
public String yyinput;
public int yycursor;
public int yyt1;
public State(String str) {
yyinput = str;
yycursor = 0;
yyt1 = 0;
}
};
.ft P
.fi
.UNINDENT
.UNINDENT
.SS Skeleton programs
.sp
With the \fB\-S, \-\-skeleton\fP option, re2java ignores all non\-re2java code and
generates a self\-contained C program that can be further compiled and executed.
The program consists of lexer code and input data. For each constructed DFA
(block or condition) re2java generates a standalone lexer and two files: an
\fB\&.input\fP file with strings derived from the DFA and a \fB\&.keys\fP file with
expected match results. The program runs each lexer on the corresponding
\fB\&.input\fP file and compares results with the expectations.
Skeleton programs are very useful for a number of reasons:
.INDENT 0.0
.IP \(bu 2
They can check correctness of various re2java optimizations (the data is
generated early in the process, before any DFA transformations have taken
place).
.IP \(bu 2
Generating a set of input data with good coverage may be useful for both
testing and benchmarking.
.IP \(bu 2
Generating self\-contained executable programs allows one to get minimized test
cases (the original code may be large or have a lot of dependencies).
.UNINDENT
.sp
The difficulty with generating input data is that for all but the most trivial
cases the number of possible input strings is too large (even if the string
length is limited). re2java solves this difficulty by generating sufficiently
many strings to cover almost all DFA transitions. It uses the following
algorithm. First, it constructs a skeleton of the DFA. For encodings with 1\-byte
code unit size (such as ASCII, UTF\-8 and EBCDIC) skeleton is just an exact copy
of the original DFA. For encodings with multibyte code units skeleton is a copy
of DFA with certain transitions omitted: namely, re2java takes at most 256 code
units for each disjoint continuous range that corresponds to a DFA transition.
The chosen values are evenly distributed and include range bounds. Instead of
trying to cover all possible paths in the skeleton (which is infeasible) re2java
generates sufficiently many paths to cover all skeleton transitions, and thus
trigger the corresponding conditional jumps in the lexer.
The algorithm implementation is limited by ~1Gb of transitions and consumes
constant amount of memory (re2java writes data to file as soon as it is
generated).
.SS Visualization and debug
.sp
With the \fB\-D, \-\-emit\-dot\fP option, re2java does not generate code. Instead,
it dumps the generated DFA in DOT format.
One can convert this dump to an image of the DFA using Graphviz or another library.
Note that this option shows the final DFA after it has gone through a number of
optimizations and transformations. Earlier stages can be dumped with various debug
options, such as \fB\-\-dump\-nfa\fP, \fB\-\-dump\-dfa\-raw\fP etc. (see the full list of options).
.SH SEE ALSO
.sp
You can find more information about re2c at the official website: \fI\%http://re2c.org\fP\&.
Similar programs are flex(1), lex(1), quex(\fI\%http://quex.sourceforge.net\fP).
.SH AUTHORS
.sp
re2java was originally written by Peter Bumbulis (\fI\%peter@csg.uwaterloo.ca\fP) in 1993.
Marcus Boerger and Dan Nuffer spent several years to turn the original idea into
a production ready code generator. Since then it has been maintained and
developed by multiple volunteers, most notably,
Brian Young (\fI\%bayoung@acm.org\fP),
\fI\%Marcus Boerger\fP,
Dan Nuffer (\fI\%nuffer@users.sourceforge.net\fP),
\fI\%Ulya Trofimovich\fP (\fI\%skvadrik@gmail.com\fP),
\fI\%Serghei Iakovlev\fP,
\fI\%Sergei Trofimovich\fP,
\fI\%Petr Skocik\fP,
\fI\%ligfx\fP
\fI\%raekye\fP
and \fI\%PolarGoose\fP\&.
.\" Generated by docutils manpage writer.
.
|