File: bench.cpp

package info (click to toggle)
readerwriterqueue 1.0.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 428 kB
  • sloc: cpp: 3,290; makefile: 79
file content (472 lines) | stat: -rw-r--r-- 16,233 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
// ©2013-2015 Cameron Desrochers.
// Distributed under the simplified BSD license (see the LICENSE file that
// should have come with this file).

// Benchmarks for moodycamel::ReaderWriterQueue.

#if defined(_MSC_VER) && _MSC_VER < 1700
#define NO_FOLLY_SUPPORT
#endif

#if defined(_MSC_VER) && _MSC_VER < 1700
#define NO_CIRCULAR_BUFFER_SUPPORT
#endif

#if !defined(__amd64__) && !defined(_M_X64) && !defined(__x86_64__) && !defined(_M_IX86) && !defined(__i386__)
#define NO_SPSC_SUPPORT  // SPSC implementation is for x86 only
#endif

#include "ext/1024cores/spscqueue.h"            // Dmitry's (on Intel site)
#ifndef NO_FOLLY_SUPPORT
#include "ext/folly/ProducerConsumerQueue.h"    // Facebook's folly (GitHub)
#endif
#include "../readerwriterqueue.h"               // Mine
#ifndef NO_CIRCULAR_BUFFER_SUPPORT
#include "../readerwritercircularbuffer.h"      // Mine
template<typename T>
class BlockingReaderWriterCircularBufferAdapter : public moodycamel::BlockingReaderWriterCircularBuffer<T> {
public:
	BlockingReaderWriterCircularBufferAdapter(std::size_t capacity) : moodycamel::BlockingReaderWriterCircularBuffer<T>(capacity) { }
	void enqueue(T const& x) { this->wait_enqueue(x); }
};
#endif
#include "systemtime.h"
#include "../tests/common/simplethread.h"

#include <iostream>
#include <iomanip>
#include <numeric>		// For std::accumulate
#include <algorithm>
#include <random>
#include <ctime>

#ifndef UNUSED
#define UNUSED(x) ((void)x);
#endif

using namespace moodycamel;
#ifndef NO_FOLLY_SUPPORT
using namespace folly;
#endif


typedef std::minstd_rand RNG_t;


enum BenchmarkType {
	bench_raw_add,
	bench_raw_remove,
	bench_empty_remove,
	bench_single_threaded,
	bench_mostly_add,
	bench_mostly_remove,
	bench_heavy_concurrent,
	bench_random_concurrent,

	BENCHMARK_COUNT
};


// Returns the number of seconds elapsed (high-precision), and the number of enqueue/dequeue
// operations performed (in the out_Ops parameter)
template<typename TQueue>
double runBenchmark(BenchmarkType benchmark, unsigned int randomSeed, double& out_Ops);

const int BENCHMARK_NAME_MAX = 17;		// Not including null terminator
const char* benchmarkName(BenchmarkType benchmark);


int main(int argc, char** argv)
{
#ifdef NDEBUG
	const int TEST_COUNT = 25;
#else
	const int TEST_COUNT = 2;
#endif
	assert(TEST_COUNT >= 2);

	const double FASTEST_PERCENT_CONSIDERED = 20;		// Consider only the fastest runs in the top 20%

	double rwqResults[BENCHMARK_COUNT][TEST_COUNT];
	double brwcbResults[BENCHMARK_COUNT][TEST_COUNT];
	double spscResults[BENCHMARK_COUNT][TEST_COUNT];
	double follyResults[BENCHMARK_COUNT][TEST_COUNT];
	
	// Also calculate a rough heuristic of "ops/s" (across all runs, not just fastest)
	double rwqOps[BENCHMARK_COUNT][TEST_COUNT];
	double brwcbOps[BENCHMARK_COUNT][TEST_COUNT];
	double spscOps[BENCHMARK_COUNT][TEST_COUNT];
	double follyOps[BENCHMARK_COUNT][TEST_COUNT];

	// Make sure the randomness of each benchmark run is identical
	unsigned int randSeeds[BENCHMARK_COUNT];
	for (unsigned int i = 0; i != BENCHMARK_COUNT; ++i) {
		randSeeds[i] = ((unsigned int)time(NULL)) * i;
	}

	// Run benchmarks
	for (int benchmark = 0; benchmark < BENCHMARK_COUNT; ++benchmark) {
		for (int i = 0; i < TEST_COUNT; ++i) {
			rwqResults[benchmark][i] = runBenchmark<ReaderWriterQueue<int>>((BenchmarkType)benchmark, randSeeds[benchmark], rwqOps[benchmark][i]);
		}
#ifndef NO_CIRCULAR_BUFFER_SUPPORT
		for (int i = 0; i < TEST_COUNT; ++i) {
			brwcbResults[benchmark][i] = runBenchmark<BlockingReaderWriterCircularBufferAdapter<int>>((BenchmarkType)benchmark, randSeeds[benchmark], brwcbOps[benchmark][i]);
		}
#else
		for (int i = 0; i < TEST_COUNT; ++i) {
			brwcbResults[benchmark][i] = 0;
			brwcbOps[benchmark][i] = 0;
		}
#endif
#ifndef NO_SPSC_SUPPORT
		for (int i = 0; i < TEST_COUNT; ++i) {
			spscResults[benchmark][i] = runBenchmark<spsc_queue<int>>((BenchmarkType)benchmark, randSeeds[benchmark], spscOps[benchmark][i]);
		}
#else
		for (int i = 0; i < TEST_COUNT; ++i) {
			spscResults[benchmark][i] = 0;
			spscOps[benchmark][i] = 0;
		}
#endif
#ifndef NO_FOLLY_SUPPORT
		for (int i = 0; i < TEST_COUNT; ++i) {
			follyResults[benchmark][i] = runBenchmark<ProducerConsumerQueue<int>>((BenchmarkType)benchmark, randSeeds[benchmark], follyOps[benchmark][i]);
		}
#else
		for (int i = 0; i < TEST_COUNT; ++i) {
			follyResults[benchmark][i] = 0;
			follyOps[benchmark][i] = 0;
		}
#endif
	}

	// Sort results
	for (int benchmark = 0; benchmark < BENCHMARK_COUNT; ++benchmark) {
		std::sort(&rwqResults[benchmark][0], &rwqResults[benchmark][0] + TEST_COUNT);
		std::sort(&brwcbResults[benchmark][0], &brwcbResults[benchmark][0] + TEST_COUNT);
		std::sort(&spscResults[benchmark][0], &spscResults[benchmark][0] + TEST_COUNT);
		std::sort(&follyResults[benchmark][0], &follyResults[benchmark][0] + TEST_COUNT);
	}
	
	// Display results
	int max = std::max(2, (int)(TEST_COUNT * FASTEST_PERCENT_CONSIDERED / 100));
	assert(max > 0);
#ifdef NO_CIRCULAR_BUFFER_SUPPORT
	std::cout << "Note: BRWCB queue not supported on this platform, discount its timings" << std::endl;
#endif
#ifdef NO_SPSC_SUPPORT
	std::cout << "Note: SPSC queue not supported on this platform, discount its timings" << std::endl;
#endif
#ifdef NO_FOLLY_SUPPORT
	std::cout << "Note: Folly queue not supported by this compiler, discount its timings" << std::endl;
#endif
	std::cout              << std::setw(BENCHMARK_NAME_MAX) << "         " << " |----------------  Min -----------------|----------------- Max -----------------|----------------- Avg -----------------|\n";
	std::cout << std::left << std::setw(BENCHMARK_NAME_MAX) << "Benchmark" << " |   RWQ   |  BRWCB  |  SPSC   |  Folly  |   RWQ   |  BRWCB  |  SPSC   |  Folly  |   RWQ   |  BRWCB  |  SPSC   |  Folly  | xSPSC | xFolly\n";
	std::cout.fill('-');
	std::cout              << std::setw(BENCHMARK_NAME_MAX) << "---------" << "-+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+-------+-------\n";
	std::cout.fill(' ');
	double rwqOpsPerSec = 0, brwcbOpsPerSec = 0, spscOpsPerSec = 0, follyOpsPerSec = 0;
	int opTimedBenchmarks = 0;
	for (int benchmark = 0; benchmark < BENCHMARK_COUNT; ++benchmark) {
		double rwqMin = rwqResults[benchmark][0], rwqMax = rwqResults[benchmark][max - 1];
		double brwcbMin = brwcbResults[benchmark][0], brwcbMax = brwcbResults[benchmark][max - 1];
		double spscMin = spscResults[benchmark][0], spscMax = spscResults[benchmark][max - 1];
		double follyMin = follyResults[benchmark][0], follyMax = follyResults[benchmark][max - 1];
		double rwqAvg = std::accumulate(&rwqResults[benchmark][0], &rwqResults[benchmark][0] + max, 0.0) / max;
		double brwcbAvg = std::accumulate(&brwcbResults[benchmark][0], &brwcbResults[benchmark][0] + max, 0.0) / max;
		double spscAvg = std::accumulate(&spscResults[benchmark][0], &spscResults[benchmark][0] + max, 0.0) / max;
		double follyAvg = std::accumulate(&follyResults[benchmark][0], &follyResults[benchmark][0] + max, 0.0) / max;
		double spscMult = rwqAvg < 0.00001 ? 0 : spscAvg / rwqAvg;
		double follyMult = follyAvg < 0.00001 ? 0 : follyAvg / rwqAvg;

		if (rwqResults[benchmark][0] != -1) {
			double rwqTotalAvg = std::accumulate(&rwqResults[benchmark][0], &rwqResults[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT;
			double brwcbTotalAvg = std::accumulate(&brwcbResults[benchmark][0], &brwcbResults[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT;
			double spscTotalAvg = std::accumulate(&spscResults[benchmark][0], &spscResults[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT;
			double follyTotalAvg = std::accumulate(&follyResults[benchmark][0], &follyResults[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT;
			rwqOpsPerSec += rwqTotalAvg == 0 ? 0 : std::accumulate(&rwqOps[benchmark][0], &rwqOps[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT / rwqTotalAvg;
			brwcbOpsPerSec += brwcbTotalAvg == 0 ? 0 : std::accumulate(&brwcbOps[benchmark][0], &brwcbOps[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT / brwcbTotalAvg;
			spscOpsPerSec += spscTotalAvg == 0 ? 0 : std::accumulate(&spscOps[benchmark][0], &spscOps[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT / spscTotalAvg;
			follyOpsPerSec += follyTotalAvg == 0 ? 0 : std::accumulate(&follyOps[benchmark][0], &follyOps[benchmark][0] + TEST_COUNT, 0.0) / TEST_COUNT / follyTotalAvg;
			++opTimedBenchmarks;
		}

		std::cout
			<< std::left << std::setw(BENCHMARK_NAME_MAX) << benchmarkName((BenchmarkType)benchmark) << " | "
			<< std::fixed << std::setprecision(4) << rwqMin << "s | "
			<< std::fixed << std::setprecision(4) << brwcbMin << "s | "
			<< std::fixed << std::setprecision(4) << spscMin << "s | "
			<< std::fixed << std::setprecision(4) << follyMin << "s | "
			<< std::fixed << std::setprecision(4) << rwqMax << "s | "
			<< std::fixed << std::setprecision(4) << brwcbMax << "s | "
			<< std::fixed << std::setprecision(4) << spscMax << "s | "
			<< std::fixed << std::setprecision(4) << follyMax << "s | "
			<< std::fixed << std::setprecision(4) << rwqAvg << "s | "
			<< std::fixed << std::setprecision(4) << brwcbAvg << "s | "
			<< std::fixed << std::setprecision(4) << spscAvg << "s | "
			<< std::fixed << std::setprecision(4) << follyAvg << "s | "
			<< std::fixed << std::setprecision(2) << spscMult << "x | "
			<< std::fixed << std::setprecision(2) << follyMult << "x"
			<< "\n"
		;
	}

	rwqOpsPerSec /= opTimedBenchmarks;
	brwcbOpsPerSec /= opTimedBenchmarks;
	spscOpsPerSec /= opTimedBenchmarks;
	follyOpsPerSec /= opTimedBenchmarks;

	std::cout
		<< "\nAverage ops/s:\n"
		<< "    ReaderWriterQueue:                  " << std::fixed << std::setprecision(2) << rwqOpsPerSec / 1000000 << " million\n"
		<< "    BlockingReaderWriterCircularBuffer: " << std::fixed << std::setprecision(2) << brwcbOpsPerSec / 1000000 << " million\n"
		<< "    SPSC queue:                         " << std::fixed << std::setprecision(2) << spscOpsPerSec / 1000000 << " million\n"
		<< "    Folly queue:                        " << std::fixed << std::setprecision(2) << follyOpsPerSec / 1000000 << " million\n"
	;
	std::cout << std::endl;

	return 0;
}


template<typename TQueue>
double runBenchmark(BenchmarkType benchmark, unsigned int randomSeed, double& out_Ops)
{
	typedef unsigned long long counter_t;

	SystemTime start;
	double result = 0;
	volatile int forceNoOptimizeDummy;

	switch (benchmark) {
	case bench_raw_add: {
		const counter_t MAX = 100 * 1000;
		out_Ops = MAX;
		TQueue q(MAX);
		int num = 0;
		start = getSystemTime();
		for (counter_t i = 0; i != MAX; ++i) {
			q.enqueue(num);
			++num;
		}
		result = getTimeDelta(start);
		
		int temp = -1;
		q.try_dequeue(temp);
		forceNoOptimizeDummy = temp;
	} break;
	case bench_raw_remove: {
		const counter_t MAX = 100 * 1000;
		out_Ops = MAX;
		TQueue q(MAX);
		int num = 0;
		for (counter_t i = 0; i != MAX; ++i) {
			q.enqueue(num);
			++num;
		}

		int element = -1;
		int total = 0;
		num = 0;
		start = getSystemTime();
		for (counter_t i = 0; i != MAX; ++i) {
			bool success = q.try_dequeue(element);
			assert(success && num++ == element);
			UNUSED(success);
			total += element;
		}
		result = getTimeDelta(start);
		assert(!q.try_dequeue(element));
		forceNoOptimizeDummy = total;
	} break;
	case bench_empty_remove: {
		const counter_t MAX = 2000 * 1000;
		out_Ops = MAX;
		TQueue q(MAX);
		int total = 0;
		start = getSystemTime();
		SimpleThread consumer([&]() {
			int element;
			for (counter_t i = 0; i != MAX; ++i) {
				if (q.try_dequeue(element)) {
					total += element;
				}
			}
		});
		SimpleThread producer([&]() {
			int num = 0;
			for (counter_t i = 0; i != MAX / 2; ++i) {
				if ((i & 32767) == 0) {		// Just to make sure the loops aren't optimized out entirely
					q.enqueue(num);
					++num;
				}
			}
		});
		producer.join();
		consumer.join();
		result = getTimeDelta(start);
		forceNoOptimizeDummy = total;
	} break;
	case bench_single_threaded: {
		const counter_t MAX = 200 * 1000;
		out_Ops = MAX;
		RNG_t rng(randomSeed);
		std::uniform_int_distribution<int> rand(0, 1);
		TQueue q(MAX);
		int num = 0;
		int element = -1;
		start = getSystemTime();
		for (counter_t i = 0; i != MAX; ++i) {
			if (rand(rng) == 1) {
				q.enqueue(num);
				++num;
			}
			else {
				q.try_dequeue(element);
			}
		}
		result = getTimeDelta(start);
		forceNoOptimizeDummy = (int)(q.try_dequeue(element));
	} break;
	case bench_mostly_add: {
		const counter_t MAX = 1200 * 1000;
		out_Ops = MAX;
		int readOps = 0;
		RNG_t rng(randomSeed);
		std::uniform_int_distribution<int> rand(0, 3);
		TQueue q(MAX);
		int element = -1;
		start = getSystemTime();
		SimpleThread consumer([&]() {
			for (counter_t i = 0; i != MAX / 10; ++i) {
				if (rand(rng) == 0) {
					q.try_dequeue(element);
					++readOps;
				}
			}
		});
		SimpleThread producer([&]() {
			int num = 0;
			for (counter_t i = 0; i != MAX; ++i) {
				q.enqueue(num);
				++num;
			}
		});
		producer.join();
		consumer.join();
		result = getTimeDelta(start);
		forceNoOptimizeDummy = (int)(q.try_dequeue(element));
		out_Ops += readOps;
	} break;
	case bench_mostly_remove: {
		const counter_t MAX = 1200 * 1000;
		out_Ops = MAX;
		int writeOps = 0;
		RNG_t rng(randomSeed);
		std::uniform_int_distribution<int> rand(0, 3);
		TQueue q(MAX);
		int element = -1;
		start = getSystemTime();
		SimpleThread consumer([&]() {
			for (counter_t i = 0; i != MAX; ++i) {
				q.try_dequeue(element);
			}
		});
		SimpleThread producer([&]() {
			int num = 0;
			for (counter_t i = 0; i != MAX / 10; ++i) {
				if (rand(rng) == 0) {
					q.enqueue(num);
					++num;
				}
			}
			writeOps = num;
		});
		producer.join();
		consumer.join();
		result = getTimeDelta(start);
		forceNoOptimizeDummy = (int)(q.try_dequeue(element));
		out_Ops += writeOps;
	} break;
	case bench_heavy_concurrent: {
		const counter_t MAX = 1000 * 1000;
		out_Ops = MAX * 2;
		TQueue q(MAX);
		int element = -1;
		start = getSystemTime();
		SimpleThread consumer([&]() {
			for (counter_t i = 0; i != MAX; ++i) {
				q.try_dequeue(element);
			}
		});
		SimpleThread producer([&]() {
			int num = 0;
			for (counter_t i = 0; i != MAX; ++i) {
				q.enqueue(num);
				++num;
			}
		});
		producer.join();
		consumer.join();
		result = getTimeDelta(start);
		forceNoOptimizeDummy = (int)(q.try_dequeue(element));
	} break;
	case bench_random_concurrent: {
		const counter_t MAX = 800 * 1000;
		int readOps = 0, writeOps = 0;
		TQueue q(MAX);
		int element = -1;
		start = getSystemTime();
		SimpleThread consumer([&]() {
			RNG_t rng(randomSeed);
			std::uniform_int_distribution<int> rand(0, 15);
			for (counter_t i = 0; i != MAX; ++i) {
				if (rand(rng) == 0) {
					q.try_dequeue(element);
					++readOps;
				}
			}
		});
		SimpleThread producer([&]() {
			RNG_t rng(randomSeed * 3 - 1);
			std::uniform_int_distribution<int> rand(0, 15);
			int num = 0;
			for (counter_t i = 0; i != MAX; ++i) {
				if (rand(rng) == 0) {
					q.enqueue(num);
					++num;
				}
			}
			writeOps = num;
		});
		producer.join();
		consumer.join();
		result = getTimeDelta(start);
		forceNoOptimizeDummy = (int)(q.try_dequeue(element));
		out_Ops = readOps + writeOps;
	} break;
	default:
		assert(false);
		out_Ops = 0;
		return 0;
	}

	UNUSED(forceNoOptimizeDummy);
	return result / 1000.0;
}

const char* benchmarkName(BenchmarkType benchmark)
{
	switch (benchmark) {
	case bench_raw_add: return "Raw add";
	case bench_raw_remove: return "Raw remove";
	case bench_empty_remove: return "Raw empty remove";
	case bench_single_threaded: return "Single-threaded";
	case bench_mostly_add: return "Mostly add";
	case bench_mostly_remove: return "Mostly remove";
	case bench_heavy_concurrent: return "Heavy concurrent";
	case bench_random_concurrent: return "Random concurrent";
	default: return "";
	}
}