File: ProducerConsumerQueue.h

package info (click to toggle)
readerwriterqueue 1.0.6-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 428 kB
  • sloc: cpp: 3,290; makefile: 79
file content (174 lines) | stat: -rw-r--r-- 4,886 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Adapted from https://github.com/facebook/folly/blob/master/folly/ProducerConsumerQueue.h
/*
 * Copyright 2013 Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// @author Bo Hu (bhu@fb.com)
// @author Jordan DeLong (delong.j@fb.com)

#ifndef PRODUCER_CONSUMER_QUEUE_H_
#define PRODUCER_CONSUMER_QUEUE_H_

#include <new>
#include <atomic>
#include <cassert>
#include <cstdlib>
#include <stdexcept>
#include <type_traits>
#include <utility>
//#include <boost/noncopyable.hpp>

namespace folly {

/*
 * ProducerConsumerQueue is a one producer and one consumer queue
 * without locks.
 */
template<class T>
struct ProducerConsumerQueue {
  typedef T value_type;

  // size must be >= 1.
  explicit ProducerConsumerQueue(uint32_t size)
    : size_(size + 1)    // +1 because one slot is always empty
    , records_(static_cast<T*>(std::malloc(sizeof(T) * (size + 1))))
    , readIndex_(0)
    , writeIndex_(0)
  {
    assert(size >= 1);
    if (!records_) {
      throw std::bad_alloc();
    }
  }

  ~ProducerConsumerQueue() {
    // We need to destruct anything that may still exist in our queue.
    // (No real synchronization needed at destructor time: only one
    // thread can be doing this.)
    if (!std::is_trivially_destructible<T>::value) {
      int read = readIndex_;
      int end = writeIndex_;
      while (read != end) {
        records_[read].~T();
        if (++read == size_) {
          read = 0;
        }
      }
    }

    std::free(records_);
  }

  template<class ...Args>
  bool enqueue(Args&&... recordArgs) {
    auto const currentWrite = writeIndex_.load(std::memory_order_relaxed);
    auto nextRecord = currentWrite + 1;
    if (nextRecord == size_) {
      nextRecord = 0;
    }
    if (nextRecord != readIndex_.load(std::memory_order_acquire)) {
      new (&records_[currentWrite]) T(std::forward<Args>(recordArgs)...);
      writeIndex_.store(nextRecord, std::memory_order_release);
      return true;
    }

    // queue is full
    return false;
  }

  // move (or copy) the value at the front of the queue to given variable
  bool try_dequeue(T& record) {
    auto const currentRead = readIndex_.load(std::memory_order_relaxed);
    if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
      // queue is empty
      return false;
    }

    auto nextRecord = currentRead + 1;
    if (nextRecord == size_) {
      nextRecord = 0;
    }
    record = std::move(records_[currentRead]);
    records_[currentRead].~T();
    readIndex_.store(nextRecord, std::memory_order_release);
    return true;
  }

  // pointer to the value at the front of the queue (for use in-place) or
  // nullptr if empty.
  T* frontPtr() {
    auto const currentRead = readIndex_.load(std::memory_order_relaxed);
    if (currentRead == writeIndex_.load(std::memory_order_acquire)) {
      // queue is empty
      return nullptr;
    }
    return &records_[currentRead];
  }

  // queue must not be empty
  void popFront() {
    auto const currentRead = readIndex_.load(std::memory_order_relaxed);
    assert(currentRead != writeIndex_.load(std::memory_order_acquire));

    auto nextRecord = currentRead + 1;
    if (nextRecord == size_) {
      nextRecord = 0;
    }
    records_[currentRead].~T();
    readIndex_.store(nextRecord, std::memory_order_release);
  }

  bool isEmpty() const {
   return readIndex_.load(std::memory_order_consume) ==
         writeIndex_.load(std::memory_order_consume);
  }

  bool isFull() const {
    auto nextRecord = writeIndex_.load(std::memory_order_consume) + 1;
    if (nextRecord == size_) {
      nextRecord = 0;
    }
    if (nextRecord != readIndex_.load(std::memory_order_consume)) {
      return false;
    }
    // queue is full
    return true;
  }

  // * If called by consumer, then true size may be more (because producer may
  //   be adding items concurrently).
  // * If called by producer, then true size may be less (because consumer may
  //   be removing items concurrently).
  // * It is undefined to call this from any other thread.
  size_t sizeGuess() const {
    int ret = writeIndex_.load(std::memory_order_consume) -
              readIndex_.load(std::memory_order_consume);
    if (ret < 0) {
      ret += size_;
    }
    return ret;
  }

private:
  const uint32_t size_;
  T* const records_;

  std::atomic<int> readIndex_;
  std::atomic<int> writeIndex_;
};

}

#endif