1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// demod_2400.c: 2.4MHz Mode S demodulator.
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This code is based on a detached fork of dump1090-fa.
//
// Copyright (c) 2014,2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "readsb.h"
#include <assert.h>
#ifdef MODEAC_DEBUG
#include <gd.h>
#endif
// 2.4MHz sampling rate version
//
// When sampling at 2.4MHz we have exactly 6 samples per 5 symbols.
// Each symbol is 500ns wide, each sample is 416.7ns wide
//
// We maintain a phase offset that is expressed in units of 1/5 of a sample i.e. 1/6 of a symbol, 83.333ns
// Each symbol we process advances the phase offset by 6 i.e. 6/5 of a sample, 500ns
//
// The correlation functions below correlate a 1-0 pair of symbols (i.e. manchester encoded 1 bit)
// starting at the given sample, and assuming that the symbol starts at a fixed 0-5 phase offset within
// m[0]. They return a correlation value, generally interpreted as >0 = 1 bit, <0 = 0 bit
// TODO check if there are better (or more balanced) correlation functions to use here
// nb: the correlation functions sum to zero, so we do not need to adjust for the DC offset in the input signal
// (adding any constant value to all of m[0..3] does not change the result)
// Changes 2020 by wiedehopf:
// 20 units per sample, 24 units per symbol that are distributed according to phase
// 1 bit has 2 symbols, in a bit representing a one the first symbol is high and the second is low
// The previous assumption was that symbols beyond our control are zero.
// Let's make the assumption that the symbols beyond our control are a statistical mean of 0 and 1.
// Such a mean is represented by 12 units per symbol.
// As an example for the above let's discuss the first slice function:
// Samples 0 and 1 are completely occupied by the bit we are trying to judge thus no outside symbols.
// The 3rd sample is 8 units of our bit and 12 units of the following symbol.
// Our bit contributes part of a low symbol represented by -8 units
// but we also get 12 units of 0.5 resulting in +6 units from the following symbol.
//
// The above comment is how these changes started out, i'll leave them here as food for thought.
// Using --ifile the coefficients from the above thought process were iteratively tweaked by hand.
// Note one of the correlation functions is no longer DC balanced (but just slightly)
// Further testing on your own samples using --ifile --quiet --stats is welcome
// Note you might need to use --throttle unless your using wiedehopf's readsb fork,
// otherwise position stats won't work as they rely on realtime differences between
// reception of CPRs.
// Creating a 5 minute sample with a gain of 43.9:
// timeout 300 rtl_sdr -f 1090000000 -s 2400000 -g 43.9 sample.dat
// Checking a set of correlation functions using the above sample:
// make && ./readsb --device-type ifile --ifile sample.dat --quiet --stats
static inline __attribute__((always_inline)) int slice_phase0(uint16_t *m) {
return 18 * m[0] - 15 * m[1] - 3 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase1(uint16_t *m) {
return 14 * m[0] - 5 * m[1] - 9 * m[2];
}
// slightly DC unbalanced but better results
static inline __attribute__((always_inline)) int slice_phase2(uint16_t *m) {
return 16 * m[0] + 5 * m[1] - 20 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase3(uint16_t *m) {
return 7 * m[0] + 11 * m[1] - 18 * m[2];
}
static inline __attribute__((always_inline)) int slice_phase4(uint16_t *m) {
return 4 * m[0] + 15 * m[1] - 20 * m[2] + 1 * m[3];
}
static uint32_t valid_df_short_bitset; // set of acceptable DF values for short messages
static uint32_t valid_df_long_bitset; // set of acceptable DF values for long messages
static uint32_t generate_damage_set(uint8_t df, unsigned damage_bits)
{
uint32_t result = (1 << df);
if (!damage_bits)
return result;
for (unsigned bit = 0; bit < 5; ++bit) {
unsigned damaged_df = df ^ (1 << bit);
result |= generate_damage_set(damaged_df, damage_bits - 1);
}
return result;
}
static void init_bitsets()
{
// DFs that we directly understand without correction
valid_df_short_bitset = (1 << 0) | (1 << 4) | (1 << 5) | (1 << 11);
valid_df_long_bitset = (1 << 16) | (1 << 17) | (1 << 18) | (1 << 20) | (1 << 21);
#ifdef ENABLE_DF24
if (1)
valid_df_long_bitset |= (1 << 24) | (1 << 25) | (1 << 26) | (1 << 27) | (1 << 28) | (1 << 29) | (1 << 30) | (1 << 31);
#endif
// if we can also repair DF damage, include those corrections
if (Modes.fixDF && Modes.nfix_crc) {
// only correct for possible DF17, other types are less useful usually (DF11/18 would also be possible)
valid_df_long_bitset |= generate_damage_set(17, 1);
}
}
// extract one byte from the mag buffers using slice_phase functions
// advance pPtr and phase
static inline __attribute__((always_inline)) uint8_t slice_byte(uint16_t **pPtr, int *phase) {
uint8_t theByte = 0;
switch (*phase) {
case 0:
theByte =
(slice_phase0(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase2(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase4(*pPtr+4) > 0 ? 0x20 : 0) |
(slice_phase1(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase3(*pPtr+9) > 0 ? 0x08 : 0) |
(slice_phase0(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase2(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase4(*pPtr+16) > 0 ? 0x01 : 0);
*phase = 1;
*pPtr += 19;
break;
case 1:
theByte =
(slice_phase1(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase3(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase0(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase2(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase4(*pPtr+9) > 0 ? 0x08 : 0) |
(slice_phase1(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase3(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase0(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 2;
*pPtr += 19;
break;
case 2:
theByte =
(slice_phase2(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase4(*pPtr+2) > 0 ? 0x40 : 0) |
(slice_phase1(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase3(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase0(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase2(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase4(*pPtr+14) > 0 ? 0x02 : 0) |
(slice_phase1(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 3;
*pPtr += 19;
break;
case 3:
theByte =
(slice_phase3(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase0(*pPtr+3) > 0 ? 0x40 : 0) |
(slice_phase2(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase4(*pPtr+7) > 0 ? 0x10 : 0) |
(slice_phase1(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase3(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase0(*pPtr+15) > 0 ? 0x02 : 0) |
(slice_phase2(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 4;
*pPtr += 19;
break;
case 4:
theByte =
(slice_phase4(*pPtr) > 0 ? 0x80 : 0) |
(slice_phase1(*pPtr+3) > 0 ? 0x40 : 0) |
(slice_phase3(*pPtr+5) > 0 ? 0x20 : 0) |
(slice_phase0(*pPtr+8) > 0 ? 0x10 : 0) |
(slice_phase2(*pPtr+10) > 0 ? 0x08 : 0) |
(slice_phase4(*pPtr+12) > 0 ? 0x04 : 0) |
(slice_phase1(*pPtr+15) > 0 ? 0x02 : 0) |
(slice_phase3(*pPtr+17) > 0 ? 0x01 : 0);
*phase = 0;
*pPtr += 20;
break;
}
return theByte;
}
static void score_phase(int try_phase, uint16_t *pa, unsigned char **bestmsg, int *bestscore, int *bestphase, unsigned char **msg, unsigned char *msg1, unsigned char *msg2) {
Modes.stats_current.demod_preamblePhase[try_phase - 4]++;
uint16_t *pPtr;
int phase, score, bytelen;
pPtr = pa + 19 + (try_phase / 5);
phase = try_phase % 5;
(*msg)[0] = slice_byte(&pPtr, &phase);
// inspect DF field early, only continue processing
// messages where the DF appears valid
uint32_t df = ((uint8_t) (*msg)[0]) >> 3;
if (valid_df_long_bitset & (1 << df)) {
bytelen = MODES_LONG_MSG_BYTES;
} else if (valid_df_short_bitset & (1 << df)) {
bytelen = MODES_SHORT_MSG_BYTES;
} else {
score = -2;
if (score > *bestscore) {
// this is only for preamble stats
*bestscore = score;
}
return;
}
for (int i = 1; i < bytelen; ++i) {
(*msg)[i] = slice_byte(&pPtr, &phase);
}
// Score the mode S message and see if it's any good.
score = scoreModesMessage(*msg, bytelen * 8);
if (score > *bestscore) {
// new high score!
*bestmsg = *msg;
*bestscore = score;
*bestphase = try_phase;
// swap to using the other buffer so we don't clobber our demodulated data
// (if we find a better result then we'll swap back, but that's OK because
// we no longer need this copy if we found a better one)
*msg = (*msg == msg1) ? msg2 : msg1;
}
}
//
// Given 'mlen' magnitude samples in 'm', sampled at 2.4MHz,
// try to demodulate some Mode S messages.
//
void demodulate2400(struct mag_buf *mag) {
unsigned char msg1[MODES_LONG_MSG_BYTES], msg2[MODES_LONG_MSG_BYTES], *msg;
unsigned char *bestmsg = NULL;
int bestscore;
int bestphase = 0;
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
uint64_t sum_scaled_signal_power = 0;
// initialize bitsets on first call
if (!valid_df_short_bitset)
init_bitsets();
msg = msg1;
// advance ifile artificial clock even if we don't receive anything
if (Modes.sdr_type == SDR_IFILE && Modes.synthetic_now) {
Modes.synthetic_now = mag->sysTimestamp;
}
uint16_t *pa = m;
uint16_t *stop = m + mlen;
uint16_t *statsProgress = m;
const uint32_t statsWindow = MODES_SHORT_MSG_SAMPLES / 2; // half a short message
uint32_t loudEvents = 0;
uint32_t noiseLowSamples = 0;
uint32_t noiseHighSamples = 0;
const uint32_t loudThreshold = Modes.loudThreshold * Modes.loudThreshold * statsWindow;
const uint32_t noiseLowThreshold = Modes.noiseLowThreshold * Modes.noiseLowThreshold * statsWindow;
const uint32_t noiseHighThreshold = Modes.noiseHighThreshold * Modes.noiseHighThreshold * statsWindow;
for (; pa < stop; pa++) {
int32_t pa_mag, base_noise, ref_level;
int msglen;
// Look for a message starting at around sample 0 with phase offset 3..7
// Ideal sample values for preambles with different phase
// Xn is the first data symbol with phase offset N
//
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
// do a pre-check to reduce CPU usage
// some silly unrolling that cuts CPU cycles
// due to plenty room in the message buffer for decoding
// we can with pa go beyond stop without a buffer overrun ...
if (Modes.autoGain && pa >= statsProgress) {
uint32_t magSum = 0;
for (uint32_t i = 0; i < statsWindow; i++) {
magSum += pa[i];
}
loudEvents += (magSum > loudThreshold);
noiseLowSamples += statsWindow * (magSum < noiseLowThreshold);
noiseHighSamples += statsWindow * (magSum < noiseHighThreshold);
statsProgress = pa + statsWindow;
}
if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
pa++; if (pa[1] > pa[7] && pa[12] > pa[14] && pa[12] > pa[15]) { goto after_pre; }
continue;
after_pre:
// ... but we must NOT decode if have ran past stop
if (!(pa < stop))
continue;
// 5 noise samples
base_noise = pa[5] + pa[8] + pa[16] + pa[17] + pa[18];
// pa_mag is the sum of the 4 preamble high bits
// minus 2 low bits between each of high bit pairs
// reduce number of preamble detections if we recently dropped samples
if (Modes.stats_15min.samples_dropped)
ref_level = base_noise * imax(PREAMBLE_THRESHOLD_PIZERO, Modes.preambleThreshold);
else
ref_level = base_noise * Modes.preambleThreshold;
ref_level >>= 5; // divide by 32
bestscore = -42;
int32_t diff_2_3 = pa[2] - pa[3];
int32_t sum_1_4 = pa[1] + pa[4];
int32_t diff_10_11 = pa[10] - pa[11];
int32_t common3456 = sum_1_4 - diff_2_3 + pa[9] + pa[12];
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 3: 2/4\0/5\1 0 0 0 0/5\1/3 3\0 0 0 0 0 0 X4
// phase 4: 1/5\0/4\2 0 0 0 0/4\2 2/4\0 0 0 0 0 0 0 X0
pa_mag = common3456 - diff_10_11;
if (pa_mag >= ref_level) {
// peaks at 1,3,9,11-12: phase 3
score_phase(4, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// peaks at 1,3,9,12: phase 4
score_phase(5, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
}
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 5: 0/5\1/3 3\0 0 0 0/3 3\1/5\0 0 0 0 0 0 0 X1
// phase 6: 0/4\2 2/4\0 0 0 0 2/4\0/5\1 0 0 0 0 0 0 X2
pa_mag = common3456 + diff_10_11;
if (pa_mag >= ref_level) {
// peaks at 1,3-4,9-10,12: phase 5
score_phase(6, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// peaks at 1,4,10,12: phase 6
score_phase(7, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
}
// peaks at 1-2,4,10,12: phase 7
// sample#: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
// phase 7: 0/3 3\1/5\0 0 0 0 1/5\0/4\2 0 0 0 0 0 0 X3
pa_mag = sum_1_4 + 2 * diff_2_3 + diff_10_11 + pa[12];
if (pa_mag >= ref_level)
score_phase(8, pa, &bestmsg, &bestscore, &bestphase, &msg, msg1, msg2);
// no preamble detected
if (bestscore == -42)
continue;
// we had at least one phase greater than the preamble threshold
// and used scoremodesmessage on those bytes
Modes.stats_current.demod_preambles++;
// Do we have a candidate?
if (bestscore < 0) {
if (bestscore == -1)
Modes.stats_current.demod_rejected_unknown_icao++;
else
Modes.stats_current.demod_rejected_bad++;
continue; // nope.
}
msglen = modesMessageLenByType(getbits(bestmsg, 1, 5));
struct modesMessage *mm = netGetMM(&Modes.netMessageBuffer[0]);
// For consistency with how the Beast / Radarcape does it,
// we report the timestamp at the end of bit 56 (even if
// the frame is a 112-bit frame)
mm->timestamp = mag->sampleTimestamp + (pa -m) * 5 + (8 + 56) * 12 + bestphase;
// compute message receive time as block-start-time + difference in the 12MHz clock
mm->sysTimestamp = mag->sysTimestamp + receiveclock_ms_elapsed(mag->sampleTimestamp, mm->timestamp);
// advance ifile artifical clock for every message received
if (Modes.sdr_type == SDR_IFILE && Modes.synthetic_now) {
Modes.synthetic_now = mm->sysTimestamp;
}
mm->score = bestscore;
// Decode the received message
{
memcpy(mm->msg, bestmsg, MODES_LONG_MSG_BYTES);
int result = decodeModesMessage(mm);
if (result < 0) {
if (result == -1)
Modes.stats_current.demod_rejected_unknown_icao++;
else
Modes.stats_current.demod_rejected_bad++;
continue;
} else {
Modes.stats_current.demod_accepted[mm->correctedbits]++;
}
}
Modes.stats_current.demod_bestPhase[bestphase - 4]++;
// measure signal power
{
double signal_power;
uint64_t scaled_signal_power = 0;
int signal_len = msglen * 12 / 5;
int k;
for (k = 0; k < signal_len; ++k) {
uint32_t mag = pa[19 + k];
scaled_signal_power += mag * mag;
}
signal_power = scaled_signal_power / 65535.0 / 65535.0;
mm->signalLevel = signal_power / signal_len;
Modes.stats_current.signal_power_sum += signal_power;
Modes.stats_current.signal_power_count += signal_len;
sum_scaled_signal_power += scaled_signal_power;
if (mm->signalLevel > Modes.stats_current.peak_signal_power)
Modes.stats_current.peak_signal_power = mm->signalLevel;
if (mm->signalLevel > 0.50119)
Modes.stats_current.strong_signal_count++; // signal power above -3dBFS
}
// Skip over the message:
// (we actually skip to 8 bits before the end of the message,
// because we can often decode two messages that *almost* collide,
// where the preamble of the second message clobbered the last
// few bits of the first message, but the message bits didn't
// overlap)
//pa += msglen * 12 / 5;
//
// let's test something, only jump part of the message and let the preamble detection handle the rest.
pa += msglen * 8 / 4;
// Pass data to the next layer
netUseMessage(mm);
}
mag->loudEvents = loudEvents;
mag->noiseLowSamples = noiseLowSamples;
mag->noiseHighSamples = noiseHighSamples;
/* update noise power */
{
double sum_signal_power = sum_scaled_signal_power / 65535.0 / 65535.0;
Modes.stats_current.noise_power_sum += (mag->mean_power * mag->length - sum_signal_power);
Modes.stats_current.noise_power_count += mag->length;
}
netDrainMessageBuffers();
}
#ifdef MODEAC_DEBUG
static int yscale(unsigned signal) {
return (int) (299 - 299.0 * signal / 65536.0);
}
static void draw_modeac(uint16_t *m, unsigned modeac, unsigned f1_clock, unsigned noise_threshold, unsigned signal_threshold, unsigned bits, unsigned noisy_bits, unsigned uncertain_bits) {
// 25 bits at 87*60MHz
// use 1 pixel = 30MHz = 1087 pixels
gdImagePtr im = gdImageCreate(1088, 300);
int red = gdImageColorAllocate(im, 255, 0, 0);
int brightgreen = gdImageColorAllocate(im, 0, 255, 0);
int darkgreen = gdImageColorAllocate(im, 0, 180, 0);
int blue = gdImageColorAllocate(im, 0, 0, 255);
int grey = gdImageColorAllocate(im, 200, 200, 200);
int white = gdImageColorAllocate(im, 255, 255, 255);
int black = gdImageColorAllocate(im, 0, 0, 0);
gdImageFilledRectangle(im, 0, 0, 1087, 299, white);
// draw samples
for (unsigned pixel = 0; pixel < 1088; ++pixel) {
int clock_offset = (pixel - 150) * 2;
int bit = clock_offset / 87;
int sample = (f1_clock + clock_offset) / 25;
int bitoffset = clock_offset % 87;
int color;
if (sample < 0)
continue;
if (clock_offset < 0 || bit >= 20) {
color = grey;
} else if (bitoffset < 27 && (uncertain_bits & (1 << (19 - bit)))) {
color = red;
} else if (bitoffset >= 27 && (noisy_bits & (1 << (19 - bit)))) {
color = red;
} else if (bitoffset >= 27) {
color = grey;
} else if (bits & (1 << (19 - bit))) {
color = brightgreen;
} else {
color = darkgreen;
}
gdImageLine(im, pixel, 299, pixel, yscale(m[sample]), color);
}
// draw bit boundaries
for (unsigned bit = 0; bit < 20; ++bit) {
unsigned clock = 87 * bit;
unsigned pixel0 = clock / 2 + 150;
unsigned pixel1 = (clock + 27) / 2 + 150;
gdImageLine(im, pixel0, 0, pixel0, 299, (bit == 0 || bit == 14) ? black : grey);
gdImageLine(im, pixel1, 0, pixel1, 299, (bit == 0 || bit == 14) ? black : grey);
}
// draw thresholds
gdImageLine(im, 0, yscale(noise_threshold), 1087, yscale(noise_threshold), blue);
gdImageLine(im, 0, yscale(signal_threshold), 1087, yscale(signal_threshold), blue);
// save it
static int file_counter;
char filename[PATH_MAX];
sprintf(filename, "modeac_%04X_%04d.png", modeac, ++file_counter);
fprintf(stderr, "writing %s\n", filename);
FILE *pngout = fopen(filename, "wb");
gdImagePng(im, pngout);
fclose(pngout);
gdImageDestroy(im);
}
#endif
//////////
////////// MODE A/C
//////////
// Mode A/C bits are 1.45us wide, consisting of 0.45us on and 1.0us off
// We track this in terms of a (virtual) 60MHz clock, which is the lowest common multiple
// of the bit frequency and the 2.4MHz sampling frequency
//
// 0.45us = 27 cycles }
// 1.00us = 60 cycles } one bit period = 1.45us = 87 cycles
//
// one 2.4MHz sample = 25 cycles
void demodulate2400AC(struct mag_buf *mag) {
uint16_t *m = mag->data;
uint32_t mlen = mag->length;
unsigned f1_sample;
double noise_stddev = sqrt(mag->mean_power - mag->mean_level * mag->mean_level); // Var(X) = E[(X-E[X])^2] = E[X^2] - (E[X])^2
unsigned noise_level = (unsigned) ((mag->mean_power + noise_stddev) * 65535 + 0.5);
for (f1_sample = 1; f1_sample < mlen; ++f1_sample) {
// Mode A/C messages should match this bit sequence:
// bit # value
// -1 0 quiet zone
// 0 1 framing pulse (F1)
// 1 C1
// 2 A1
// 3 C2
// 4 A2
// 5 C4
// 6 A4
// 7 0 quiet zone (X1)
// 8 B1
// 9 D1
// 10 B2
// 11 D2
// 12 B4
// 13 D4
// 14 1 framing pulse (F2)
// 15 0 quiet zone (X2)
// 16 0 quiet zone (X3)
// 17 SPI
// 18 0 quiet zone (X4)
// 19 0 quiet zone (X5)
// Look for a F1 and F2 pair,
// with F1 starting at offset f1_sample.
// the first framing pulse covers 3.5 samples:
//
// |----| |----|
// | F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// and there is some unknown phase offset of the
// leading edge e.g.:
//
// |----| |----|
// __| F1 |________| C1 |_
//
// | 0 | 1 | 2 | 3 | 4 |
//
// in theory the "on" period can straddle 3 samples
// but it's not a big deal as at most 4% of the power
// is in the third sample.
if (!(m[f1_sample - 1] < m[f1_sample + 0]))
continue; // not a rising edge
if (m[f1_sample + 2] > m[f1_sample + 0] || m[f1_sample + 2] > m[f1_sample + 1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f1_level = (m[f1_sample + 0] + m[f1_sample + 1]) / 2;
if (noise_level * 2 > f1_level) {
// require 6dB above noise
continue;
}
// estimate initial clock phase based on the amount of power
// that ended up in the second sample
float f1a_power = (float) m[f1_sample] * m[f1_sample];
float f1b_power = (float) m[f1_sample + 1] * m[f1_sample + 1];
float fraction = f1b_power / (f1a_power + f1b_power);
unsigned f1_clock = (unsigned) (25 * (f1_sample + fraction * fraction) + 0.5);
// same again for F2
// F2 is 20.3us / 14 bit periods after F1
unsigned f2_clock = f1_clock + (87 * 14);
unsigned f2_sample = f2_clock / 25;
assert(f2_sample < mlen + Modes.trailing_samples);
if (!(m[f2_sample - 1] < m[f2_sample + 0]))
continue;
if (m[f2_sample + 2] > m[f2_sample + 0] || m[f2_sample + 2] > m[f2_sample + 1])
continue; // quiet part of bit wasn't sufficiently quiet
unsigned f2_level = (m[f2_sample + 0] + m[f2_sample + 1]) / 2;
if (noise_level * 2 > f2_level) {
// require 6dB above noise
continue;
}
unsigned f1f2_level = (f1_level > f2_level ? f1_level : f2_level);
float midpoint = sqrtf(noise_level * f1f2_level); // geometric mean of the two levels
unsigned signal_threshold = (unsigned) (midpoint * M_SQRT2 + 0.5); // +3dB
unsigned noise_threshold = (unsigned) (midpoint / M_SQRT2 + 0.5); // -3dB
// Looks like a real signal. Demodulate all the bits.
unsigned uncertain_bits = 0;
unsigned noisy_bits = 0;
unsigned bits = 0;
unsigned bit;
unsigned clock;
for (bit = 0, clock = f1_clock; bit < 20; ++bit, clock += 87) {
unsigned sample = clock / 25;
bits <<= 1;
noisy_bits <<= 1;
uncertain_bits <<= 1;
// check for excessive noise in the quiet period
if (m[sample + 2] >= signal_threshold) {
noisy_bits |= 1;
}
// decide if this bit is on or off
if (m[sample + 0] >= signal_threshold || m[sample + 1] >= signal_threshold) {
bits |= 1;
} else if (m[sample + 0] > noise_threshold && m[sample + 1] > noise_threshold) {
/* not certain about this bit */
uncertain_bits |= 1;
} else {
/* this bit is off */
}
}
// framing bits must be on
if ((bits & 0x80020) != 0x80020) {
continue;
}
// quiet bits must be off
if ((bits & 0x0101B) != 0) {
continue;
}
if (noisy_bits || uncertain_bits) {
continue;
}
// Convert to the form that we use elsewhere:
// 00 A4 A2 A1 00 B4 B2 B1 SPI C4 C2 C1 00 D4 D2 D1
unsigned modeac =
((bits & 0x40000) ? 0x0010 : 0) | // C1
((bits & 0x20000) ? 0x1000 : 0) | // A1
((bits & 0x10000) ? 0x0020 : 0) | // C2
((bits & 0x08000) ? 0x2000 : 0) | // A2
((bits & 0x04000) ? 0x0040 : 0) | // C4
((bits & 0x02000) ? 0x4000 : 0) | // A4
((bits & 0x00800) ? 0x0100 : 0) | // B1
((bits & 0x00400) ? 0x0001 : 0) | // D1
((bits & 0x00200) ? 0x0200 : 0) | // B2
((bits & 0x00100) ? 0x0002 : 0) | // D2
((bits & 0x00080) ? 0x0400 : 0) | // B4
((bits & 0x00040) ? 0x0004 : 0) | // D4
((bits & 0x00004) ? 0x0080 : 0); // SPI
#ifdef MODEAC_DEBUG
draw_modeac(m, modeac, f1_clock, noise_threshold, signal_threshold, bits, noisy_bits, uncertain_bits);
#endif
// This message looks good, submit it
struct modesMessage *mm = netGetMM(&Modes.netMessageBuffer[0]);
// For consistency with how the Beast / Radarcape does it,
// we report the timestamp at the second framing pulse (F2)
mm->timestamp = mag->sampleTimestamp + f2_clock / 5; // 60MHz -> 12MHz
// compute message receive time as block-start-time + difference in the 12MHz clock
mm->sysTimestamp = mag->sysTimestamp + receiveclock_ms_elapsed(mag->sampleTimestamp, mm->timestamp);
decodeModeAMessage(mm, modeac);
// Pass data to the next layer
netUseMessage(mm);
f1_sample += (20 * 87 / 25);
Modes.stats_current.demod_modeac++;
}
netDrainMessageBuffers();
}
|