1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// convert_benchmark.c: benchmarks for IQ sample converters
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This code is based on a detached fork of dump1090-fa.
//
// Copyright (c) 2016-2017 Oliver Jowett <oliver@mutability.co.uk>
// Copyright (c) 2017 FlightAware LLC
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "../readsb.h"
static void **testdata_uc8;
static void **testdata_sc16;
static void **testdata_sc16q11;
static uint16_t *outdata;
// SC16Q11_TABLE_BITS notes:
// 11 bits (8MB) gives you full precision, but a large table that doesn't fit in cache
// 9 bits (512kB) will fit in the Pi 2/3's shared L2 cache
// (but there will be contention from other cores)
// 8 bits (128kB) will fit in the Pi 1's L2 cache
// 7 bits (32kB) will fit in the Pi 1/2/3's L1 cache
// Sample results for "SC16Q11, no DC":
// Core i7-3610QM @ 2300MHz
// SC16Q11_TABLE_BITS undefined: 152.80M samples/second
// SC16Q11_TABLE_BITS=11: 101.22M samples/second
// SC16Q11_TABLE_BITS=9: 243.04M samples/second
// SC16Q11_TABLE_BITS=8: 316.84M samples/second
// SC16Q11_TABLE_BITS=7: 375.70M samples/second
// Pi3B @ 1200MHz
// SC16Q11_TABLE_BITS undefined: 22.19M samples/second
// SC16Q11_TABLE_BITS=11: 5.86M samples/second
// SC16Q11_TABLE_BITS=9: 19.33M samples/second
// SC16Q11_TABLE_BITS=8: 33.50M samples/second
// SC16Q11_TABLE_BITS=7: 59.78M samples/second
// Pi1B @ 700MHz
// SC16Q11_TABLE_BITS undefined: 5.24M samples/second
// SC16Q11_TABLE_BITS=11: 2.53M samples/second
// SC16Q11_TABLE_BITS=9: 3.23M samples/second
// SC16Q11_TABLE_BITS=8: 5.77M samples/second
// SC16Q11_TABLE_BITS=7: 10.23M samples/second
void prepare()
{
srand(1);
testdata_uc8 = calloc(10, sizeof(void*));
testdata_sc16 = calloc(10, sizeof(void*));
testdata_sc16q11 = calloc(10, sizeof(void*));
outdata = calloc(MODES_MAG_BUF_SAMPLES, sizeof(uint16_t));
for (int buf = 0; buf < 10; ++buf) {
uint8_t *uc8 = calloc(MODES_MAG_BUF_SAMPLES, 2);
testdata_uc8[buf] = uc8;;
uint16_t *sc16 = calloc(MODES_MAG_BUF_SAMPLES, 4);
testdata_sc16[buf] = sc16;
uint16_t *sc16q11 = calloc(MODES_MAG_BUF_SAMPLES, 4);
testdata_sc16q11[buf] = sc16q11;
for (unsigned i = 0; i < MODES_MAG_BUF_SAMPLES; ++i) {
double I = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;
double Q = 2.0 * rand() / (RAND_MAX + 1.0) - 1.0;
uc8[i*2] = (uint8_t) (I * 128 + 128);
uc8[i*2+1] = (uint8_t) (Q * 128 + 128);
sc16[i*2] = htole16( (int16_t) (I * 32768.0) );
sc16[i*2+1] = htole16( (int16_t) (Q * 32768.0) );
sc16q11[i*2] = htole16( (int16_t) (I * 2048.0) );
sc16q11[i*2+1] = htole16( (int16_t) (Q * 2048.0) );
}
}
}
void test(const char *what, input_format_t format, void **data, double sample_rate, bool filter_dc) {
fprintf(stderr, "Benchmarking: %s ", what);
struct converter_state *state;
iq_convert_fn converter = init_converter(format, sample_rate, filter_dc, &state);
if (!converter) {
fprintf(stderr, "Can't initialize converter\n");
return;
}
struct timespec total = { 0, 0 };
int iterations = 0;
// Run it once to force init.
converter(data[0], outdata, MODES_MAG_BUF_SAMPLES, state, NULL, NULL);
while (total.tv_sec < 5) {
fprintf(stderr, ".");
struct timespec start;
start_cpu_timing(&start);
for (int i = 0; i < 10; ++i) {
converter(data[i], outdata, MODES_MAG_BUF_SAMPLES, state, NULL, NULL);
}
end_cpu_timing(&start, &total);
iterations++;
}
fprintf(stderr, "\n");
cleanup_converter(&state);
double samples = 10.0 * iterations * MODES_MAG_BUF_SAMPLES;
double nanos = total.tv_sec * 1e9 + total.tv_nsec;
fprintf(stderr, " %.2fM samples in %.6f seconds\n",
samples / 1e6, nanos / 1e9);
fprintf(stderr, " %.2fM samples/second\n",
samples / nanos * 1e3);
}
int main(int argc, char **argv)
{
MODES_NOTUSED(argc);
MODES_NOTUSED(argv);
prepare();
test("SC16Q11, DC", INPUT_SC16Q11, testdata_sc16q11, 2400000, true);
test("SC16Q11, no DC", INPUT_SC16Q11, testdata_sc16q11, 2400000, false);
test("UC8, DC", INPUT_UC8, testdata_uc8, 2400000, true);
test("UC8, no DC", INPUT_UC8, testdata_uc8, 2400000, false);
test("SC16, DC", INPUT_SC16, testdata_sc16, 2400000, true);
test("SC16, no DC", INPUT_SC16, testdata_sc16, 2400000, false);
}
|