1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// sdr_hackrf.c: HackRF support
//
// Copyright (c) 2023 Timothy Mullican <timothy.j.mullican@gmail.com>
//
// This code is based on dump1090_sdrplus.
//
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
// HackRF One support added by Ilker Temir <ilker@ilkertemir.com>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "readsb.h"
#include <libhackrf/hackrf.h>
#include <inttypes.h>
static struct {
const char *device_str;
unsigned block_size;
hackrf_device *device;
iq_convert_fn converter;
struct converter_state *converter_state;
// HackRF has three gain controls
// RF ("amp", 0 or ~11 dB)
// IF ("lna", 0 to 40 dB in 8 dB steps)
// baseband ("vga", 0 to 62 dB in 2 dB steps)
bool rf_gain;
unsigned vga_gain;
} hackRF;
void hackRFInitConfig() {
hackRF.device_str = NULL;
hackRF.device = NULL;
hackRF.rf_gain = false;
hackRF.vga_gain = 48;
}
bool hackRFHandleOption(int key, char *arg) {
switch (key) {
case OptHackRfGainEnable:
hackRF.rf_gain = true;
break;
case OptHackRfVgaGain:
hackRF.vga_gain = atoi(arg);
break;
default:
return false;
}
return true;
}
bool hackRFOpen() {
if (hackRF.device) {
return true;
}
int status;
status = hackrf_init();
if ((status = hackrf_init()) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_init failed: %s\n", hackrf_error_name(status));
goto error;
}
fprintf(stderr, "Opening HackRF: %s\n", Modes.dev_name);
if (Modes.dev_name) {
status = hackrf_open_by_serial(Modes.dev_name, &hackRF.device);
} else {
status = hackrf_open(&hackRF.device);
}
if (status != HACKRF_SUCCESS) {
fprintf(stderr, "Failed to open hackRF: %s\n", hackrf_error_name(status));
goto error;
}
if ((status = hackrf_set_sample_rate(hackRF.device, Modes.sample_rate)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_sample_rate failed: %s\n", hackrf_error_name(status));
goto error;
}
if ((status = hackrf_set_freq(hackRF.device, Modes.freq)) != HACKRF_SUCCESS ) {
fprintf(stderr, "hackrf_set_freq failed: %s\n", hackrf_error_name(status));
goto error;
}
if (Modes.gain == MODES_AUTO_GAIN || Modes.gain >= 400) {
// hackRF doesn't have automatic gain control
Modes.gain = 400;
}
if (Modes.gain < 0) {
// gain is unsigned
Modes.gain = 0;
}
if (hackRF.rf_gain) {
if ((status = hackrf_set_amp_enable(hackRF.device, 1)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_amp_enable failed: %s\n", hackrf_error_name(status));
goto error;
}
}
if ((status = hackrf_set_lna_gain(hackRF.device, Modes.gain / 10)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_lna_gain failed: %s\n", hackrf_error_name(status));
goto error;
}
if ((status = hackrf_set_vga_gain(hackRF.device, hackRF.vga_gain)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_vga_gain failed: %s\n", hackrf_error_name(status));
goto error;
}
if (Modes.biastee) {
fprintf(stderr, "Enabling Bias Tee\n");
if ((status = hackrf_set_antenna_enable(hackRF.device, 1)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_set_antenna_enable failed: %s\n", hackrf_error_name(status));
}
}
fprintf (stderr, "HackRF successfully initialized "
"(AMP Enable: %i, LNA Gain: %i, VGA Gain: %i).\n",
hackRF.rf_gain, Modes.gain / 10, hackRF.vga_gain);
hackRF.converter = init_converter(INPUT_UC8,
Modes.sample_rate,
Modes.dc_filter,
&hackRF.converter_state);
if (!hackRF.converter) {
fprintf(stderr, "can't initialize sample converter\n");
goto error;
}
return true;
error:
if (hackRF.device) {
hackrf_close(hackRF.device);
hackrf_exit();
hackRF.device = NULL;
}
return false;
}
static struct timespec thread_cpu;
static int hackrfCallback(hackrf_transfer *transfer) {
struct mag_buf *outbuf;
struct mag_buf *lastbuf;
uint32_t slen;
unsigned next_free_buffer;
unsigned free_bufs;
int64_t block_duration;
static int was_odd = 0;
static int dropping = 0;
static uint64_t sampleCounter = 0;
uint8_t *buf = transfer->buffer;
uint32_t len = transfer->buffer_length;
int64_t sysMicroseconds = mono_micro_seconds();
int64_t sysTimestamp = mstime();
// Lock the data buffer variables before accessing them
lockReader();
// HackRF one returns signed IQ values, convert them to unsigned
for (uint32_t i = 0; i < len; i++) {
buf[i] ^= 0x80; // Flip the MSB to convert
}
next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
free_bufs = (Modes.first_filled_buffer - next_free_buffer + MODES_MAG_BUFFERS) % MODES_MAG_BUFFERS;
if (len != Modes.sdr_buf_size) {
fprintf(stderr, "weirdness: hackRF gave us a block with an unusual size (got %u bytes, expected %u bytes)\n",
(unsigned) len, (unsigned) Modes.sdr_buf_size);
if (len > Modes.sdr_buf_size) {
unsigned discard = (len - Modes.sdr_buf_size + 1) / 2;
outbuf->dropped += discard;
buf += discard * 2;
len -= discard * 2;
}
}
if (was_odd) {
++buf;
--len;
++outbuf->dropped;
}
was_odd = (len & 1);
slen = len / 2; // Drops any trailing odd sample, that's OK
if (free_bufs == 0 || (dropping && free_bufs < MODES_MAG_BUFFERS / 2)) {
// FIFO is full. Drop this block.
dropping = 1;
outbuf->dropped += slen;
sampleCounter += slen;
// make extra sure that the decode thread isn't sleeping
unlockReader();
return 1;
}
dropping = 0;
unlockReader();
// Compute the sample timestamp and system timestamp for the start of the block
outbuf->sampleTimestamp = sampleCounter * 12e6 / Modes.sample_rate;
sampleCounter += slen;
// Get the approx system time for the start of this block
block_duration = 1e3 * slen / Modes.sample_rate;
outbuf->sysTimestamp = sysTimestamp;
outbuf->sysMicroseconds = sysMicroseconds;
outbuf->sysTimestamp -= block_duration;
outbuf->sysMicroseconds -= block_duration * 1000;
// Copy trailing data from last block (or reset if not valid)
if (outbuf->dropped == 0) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length, Modes.trailing_samples * sizeof (uint16_t));
} else {
memset(outbuf->data, 0, Modes.trailing_samples * sizeof (uint16_t));
}
// Convert the new data
outbuf->length = slen;
hackRF.converter(buf, &outbuf->data[Modes.trailing_samples], slen, hackRF.converter_state, &outbuf->mean_level, &outbuf->mean_power);
// Push the new data to the demodulation thread
lockReader();
Modes.mag_buffers[next_free_buffer].dropped = 0;
Modes.mag_buffers[next_free_buffer].length = 0; // just in case
Modes.first_free_buffer = next_free_buffer;
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&thread_cpu, &Modes.reader_cpu_accumulator);
start_cpu_timing(&thread_cpu);
wakeDecode();
unlockReader();
return 0;
}
void hackRFRun() {
if (!hackRF.device) {
return;
}
start_cpu_timing(&thread_cpu);
int status;
if ((status = hackrf_start_rx(hackRF.device, hackrfCallback, NULL)) != HACKRF_SUCCESS) {
fprintf(stderr, "hackrf_start_rx failed: %s\n", hackrf_error_name(status));
}
struct timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
while (!Modes.exit) {
threadTimedWait(&Threads.reader, &ts, 50);
}
}
void hackRFClose() {
hackrf_stop_rx(hackRF.device);
if (hackRF.converter) {
cleanup_converter(&hackRF.converter_state);
hackRF.converter = NULL;
}
if (hackRF.device) {
hackrf_close(hackRF.device);
hackRF.device = NULL;
}
}
|