1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// sdr_ubladerf.c: bladeRF 2.0 Micro support
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "readsb.h"
#include "sdr_ubladerf.h"
#include <libbladeRF.h>
#include <inttypes.h>
static struct {
const char *device_str;
const char *fpga_path;
unsigned decimation;
bladerf_lpf_mode lpf_mode;
unsigned lpf_bandwidth;
unsigned block_size;
struct bladerf *device;
iq_convert_fn converter;
struct converter_state *converter_state;
} uBladeRF;
void ubladeRFInitConfig() {
uBladeRF.device_str = NULL;
uBladeRF.fpga_path = NULL;
uBladeRF.decimation = 1;
uBladeRF.lpf_mode = BLADERF_LPF_NORMAL;
uBladeRF.lpf_bandwidth = 1750000;
uBladeRF.device = NULL;
}
bool ubladeRFHandleOption(int key, char *arg) {
switch (key) {
case OptBladeFpgaDir:
uBladeRF.fpga_path = strdup(arg);
break;
case OptBladeDecim:
uBladeRF.decimation = atoi(arg);
break;
case OptBladeBw:
if (!strcasecmp(arg, "bypass")) {
uBladeRF.lpf_mode = BLADERF_LPF_BYPASSED;
} else {
uBladeRF.lpf_mode = BLADERF_LPF_NORMAL;
uBladeRF.lpf_bandwidth = atoi(arg);
}
break;
default:
return false;
}
return true;
}
static void show_config() {
int status;
#if defined(LIBBLADERF_API_VERSION) && (LIBBLADERF_API_VERSION >= 0x02020000)
bladerf_sample_rate rate;
bladerf_frequency freq;
bladerf_gain gain;
bladerf_bandwidth bw;
#else
unsigned rate;
unsigned freq;
unsigned bw;
int gain;
#endif
bladerf_lpf_mode lpf_mode;
int16_t lms_dc_i, lms_dc_q;
int16_t fpga_phase, fpga_gain;
struct bladerf_lms_dc_cals dc_cals;
bool biastee;
if ((status = bladerf_get_sample_rate(uBladeRF.device, BLADERF_MODULE_RX, &rate)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back device sample rate: %s\n", bladerf_strerror(status));
return;
}
if ((status = bladerf_get_frequency(uBladeRF.device, BLADERF_MODULE_RX, &freq)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back device frequency: %s\n", bladerf_strerror(status));
return;
}
if ((status = bladerf_get_bandwidth(uBladeRF.device, BLADERF_MODULE_RX, &bw)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back device bandwidth: %s\n", bladerf_strerror(status));
return;
}
if ((status = bladerf_get_gain(uBladeRF.device, BLADERF_MODULE_RX, &gain)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back device gain: %s\n", bladerf_strerror(status));
}
if ((status = bladerf_get_correction(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_I, &lms_dc_i)) < 0 ||
(status = bladerf_get_correction(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_CORR_LMS_DCOFF_Q, &lms_dc_q)) < 0 ||
(status = bladerf_get_correction(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_CORR_FPGA_PHASE, &fpga_phase)) < 0 ||
(status = bladerf_get_correction(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_CORR_FPGA_GAIN, &fpga_gain)) < 0
) {
fprintf(stderr, "bladeRF: couldn't read back device configuration (correction values)\n");
//return;
}
if (!strcmp("bladerf1", bladerf_get_board_name(uBladeRF.device))) {
if ((status = bladerf_get_lpf_mode(uBladeRF.device, BLADERF_MODULE_RX, &lpf_mode)) < 0 ||
(status = bladerf_lms_get_dc_cals(uBladeRF.device, &dc_cals)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back device configuration (BladeRF 1 values)\n");
return;
}
}
if (!strcmp("bladerf2", bladerf_get_board_name(uBladeRF.device))) {
if ((status = bladerf_get_bias_tee(uBladeRF.device, BLADERF_CHANNEL_RX(0), &biastee)) < 0) {
fprintf(stderr, "bladeRF: couldn't read back BladeRF Micro bias tee configuration\n");
}
}
fprintf(stderr, "bladeRF: sampling rate: %.1f MHz\n", rate / 1e6);
fprintf(stderr, "bladeRF: frequency: %.1f MHz\n", freq / 1e6);
fprintf(stderr, "bladeRF: gain: %ddB\n", gain);
fprintf(stderr, "bladeRF: biastee: %d\n", (int)biastee);
switch (lpf_mode) {
case BLADERF_LPF_NORMAL:
fprintf(stderr, "bladeRF: LPF bandwidth: %.2f MHz\n", bw/1e6);
break;
case BLADERF_LPF_BYPASSED:
fprintf(stderr, "bladeRF: LPF bypassed\n");
break;
case BLADERF_LPF_DISABLED:
fprintf(stderr, "bladeRF: LPF disabled\n");
break;
default:
fprintf(stderr, "bladeRF: LPF in unknown state\n");
break;
}
fprintf(stderr, "bladeRF: calibration settings:\n");
fprintf(stderr, " LMS DC adjust: I=%d Q=%d\n", lms_dc_i, lms_dc_q);
fprintf(stderr, " FPGA phase adjust: %+.3f degrees\n", fpga_phase * 10.0 / 4096);
fprintf(stderr, " FPGA gain adjust: %+.3f\n", fpga_gain * 1.0 / 4096);
fprintf(stderr, " LMS LPF tuning: %d\n", dc_cals.lpf_tuning);
fprintf(stderr, " LMS RX LPF filter: I=%d Q=%d\n", dc_cals.rx_lpf_i, dc_cals.rx_lpf_q);
fprintf(stderr, " LMS RXVGA2 DC ref: %d\n", dc_cals.dc_ref);
fprintf(stderr, " LMS RXVGA2A: I=%d Q=%d\n", dc_cals.rxvga2a_i, dc_cals.rxvga2a_q);
fprintf(stderr, " LMS RXVGA2B: I=%d Q=%d\n", dc_cals.rxvga2b_i, dc_cals.rxvga2b_q);
}
bool ubladeRFOpen() {
if (uBladeRF.device) {
return true;
}
int status;
bladerf_set_usb_reset_on_open(true);
fprintf(stderr, "Opening BladeRF: %s\n", Modes.dev_name);
if ((status = bladerf_open(&uBladeRF.device, Modes.dev_name)) < 0) {
fprintf(stderr, "Failed to open bladeRF: %s\n", bladerf_strerror(status));
goto error;
}
const char *fpga_path;
if (uBladeRF.fpga_path) {
fpga_path = uBladeRF.fpga_path;
} else {
bladerf_fpga_size size;
if ((status = bladerf_get_fpga_size(uBladeRF.device, &size)) < 0) {
fprintf(stderr, "bladerf_get_fpga_size failed: %s\n", bladerf_strerror(status));
goto error;
}
switch (size) {
case BLADERF_FPGA_40KLE:
fpga_path = "/usr/share/Nuand/bladeRF/hostedx40.rbf";
break;
case BLADERF_FPGA_115KLE:
fpga_path = "/usr/share/Nuand/bladeRF/hostedx115.rbf";
break;
case BLADERF_FPGA_A4:
fpga_path = "/usr/share/Nuand/bladeRF/hostedxA4.rbf";
break;
default:
fprintf(stderr, "bladeRF: unknown FPGA size, skipping FPGA load");
fpga_path = NULL;
break;
}
}
if (fpga_path && fpga_path[0]) {
fprintf(stderr, "bladeRF: loading FPGA bitstream from %s\n", fpga_path);
if ((status = bladerf_load_fpga(uBladeRF.device, fpga_path)) < 0) {
fprintf(stderr, "bladerf_load_fpga() failed: %s\n", bladerf_strerror(status));
goto error;
}
}
switch (bladerf_device_speed(uBladeRF.device)) {
case BLADERF_DEVICE_SPEED_HIGH:
uBladeRF.block_size = 1024;
break;
case BLADERF_DEVICE_SPEED_SUPER:
uBladeRF.block_size = 2048;
break;
default:
fprintf(stderr, "couldn't determine bladerf device speed\n");
goto error;
}
// Close and re-open the bladeRF, otherwise we get "An unexpected error occurred" in later calls.
bladerf_close(uBladeRF.device);
if ((status = bladerf_open(&uBladeRF.device, Modes.dev_name)) < 0) {
fprintf(stderr, "Failed to open bladeRF: %s\n", bladerf_strerror(status));
goto error;
}
if ((status = bladerf_set_sample_rate(uBladeRF.device, BLADERF_MODULE_RX, Modes.sample_rate * uBladeRF.decimation, NULL)) < 0) {
fprintf(stderr, "bladerf_set_sample_rate failed: %s\n", bladerf_strerror(status));
goto error;
}
if ((status = bladerf_set_frequency(uBladeRF.device, BLADERF_MODULE_RX, Modes.freq)) < 0) {
fprintf(stderr, "bladerf_set_frequency failed: %s\n", bladerf_strerror(status));
goto error;
}
if (!strcmp("bladerf1", bladerf_get_board_name(uBladeRF.device))) {
if ((status = bladerf_set_lpf_mode(uBladeRF.device, BLADERF_MODULE_RX, uBladeRF.lpf_mode)) < 0) {
fprintf(stderr, "bladerf_set_lpf_mode failed: %s\n", bladerf_strerror(status));
goto error;
}
}
if ((status = bladerf_set_bandwidth(uBladeRF.device, BLADERF_MODULE_RX, uBladeRF.lpf_bandwidth, NULL)) < 0) {
fprintf(stderr, "bladerf_set_bandwidth failed: %s\n", bladerf_strerror(status));
goto error;
}
/* turn the tx gain right off, just in case */
if ((status = bladerf_set_gain(uBladeRF.device, BLADERF_MODULE_TX, -100)) < 0) {
fprintf(stderr, "bladerf_set_gain(TX) failed: %s\n", bladerf_strerror(status));
goto error;
}
/* Gain = -100 is AGC */
if (Modes.gain == -100) {
fprintf(stderr, "BladeRF: using AGC\n");
/* Note: we should really query the BladeRF library to find out what modes we are allowed to use */
if ((status = bladerf_set_gain_mode(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_GAIN_DEFAULT)) < 0) {
fprintf(stderr, "bladerf_set_gain_mode to default/AGC failed: %s\n", bladerf_strerror(status));
}
} else {
if ((status = bladerf_set_gain_mode(uBladeRF.device, BLADERF_MODULE_RX, BLADERF_GAIN_MGC)) < 0) {
fprintf(stderr, "bladerf_set_gain_mode to manual failed: %s\n", bladerf_strerror(status));
}
fprintf(stderr, "BladeRF: setting manual gain to %d\n", Modes.gain / 10);
if ((status = bladerf_set_gain(uBladeRF.device, BLADERF_MODULE_RX, Modes.gain / 10)) < 0) {
fprintf(stderr, "bladerf_set_gain(RX) failed: %s\n", bladerf_strerror(status));
goto error;
}
}
if (!strcmp("bladerf2", bladerf_get_board_name(uBladeRF.device))) {
if (Modes.biastee) {
// Note: the BladeRF micro enables/disables on both RX channels at the same time
fprintf(stderr, "Enabling Bias on RX channels\n");
if ((status = bladerf_set_bias_tee(uBladeRF.device, BLADERF_CHANNEL_RX(0), true)) < 0) {
fprintf(stderr, "bladerf_set_bias_tee failed for channel 0: %s\n", bladerf_strerror(status));
}
}
}
if (!strcmp("bladerf1", bladerf_get_board_name(uBladeRF.device))) {
if ((status = bladerf_set_loopback(uBladeRF.device, BLADERF_LB_NONE)) < 0) {
fprintf(stderr, "bladerf_set_loopback() failed: %s\n", bladerf_strerror(status));
goto error;
}
if ((status = bladerf_calibrate_dc(uBladeRF.device, BLADERF_DC_CAL_LPF_TUNING)) < 0) {
fprintf(stderr, "bladerf_calibrate_dc(LPF_TUNING) failed: %s\n", bladerf_strerror(status));
goto error;
}
if ((status = bladerf_calibrate_dc(uBladeRF.device, BLADERF_DC_CAL_RX_LPF)) < 0) {
fprintf(stderr, "bladerf_calibrate_dc(RX_LPF) failed: %s\n", bladerf_strerror(status));
goto error;
}
if ((status = bladerf_calibrate_dc(uBladeRF.device, BLADERF_DC_CAL_RXVGA2)) < 0) {
fprintf(stderr, "bladerf_calibrate_dc(RXVGA2) failed: %s\n", bladerf_strerror(status));
goto error;
}
}
show_config();
uBladeRF.converter = init_converter(INPUT_SC16Q11,
Modes.sample_rate,
Modes.dc_filter,
&uBladeRF.converter_state);
if (!uBladeRF.converter) {
fprintf(stderr, "can't initialize sample converter\n");
goto error;
}
return true;
error:
if (uBladeRF.device) {
bladerf_close(uBladeRF.device);
uBladeRF.device = NULL;
}
return false;
}
static struct timespec thread_cpu;
static unsigned timeouts = 0;
static void *handle_bladerf_samples(struct bladerf *dev,
struct bladerf_stream *stream,
struct bladerf_metadata *meta,
void *samples,
size_t num_samples,
void *user_data) {
static uint64_t nextTimestamp = 0;
static bool dropping = false;
int64_t sysMicroseconds = mono_micro_seconds();
int64_t sysTimestamp = mstime();
MODES_NOTUSED(dev);
MODES_NOTUSED(stream);
MODES_NOTUSED(meta);
MODES_NOTUSED(user_data);
MODES_NOTUSED(num_samples);
lockReader();
if (Modes.exit) {
unlockReader();
return BLADERF_STREAM_SHUTDOWN;
}
unsigned next_free_buffer = (Modes.first_free_buffer + 1) % MODES_MAG_BUFFERS;
struct mag_buf *outbuf = &Modes.mag_buffers[Modes.first_free_buffer];
struct mag_buf *lastbuf = &Modes.mag_buffers[(Modes.first_free_buffer + MODES_MAG_BUFFERS - 1) % MODES_MAG_BUFFERS];
unsigned free_bufs = (Modes.first_filled_buffer - next_free_buffer + MODES_MAG_BUFFERS) % MODES_MAG_BUFFERS;
if (free_bufs == 0 || (dropping && free_bufs < MODES_MAG_BUFFERS / 2)) {
// FIFO is full. Drop this block.
dropping = true;
unlockReader();
return samples;
}
dropping = false;
unlockReader();
outbuf->sysTimestamp = sysTimestamp;
outbuf->sysMicroseconds = sysMicroseconds;
// Copy trailing data from last block (or reset if not valid)
if (outbuf->dropped == 0) {
memcpy(outbuf->data, lastbuf->data + lastbuf->length, Modes.trailing_samples * sizeof (uint16_t));
} else {
memset(outbuf->data, 0, Modes.trailing_samples * sizeof (uint16_t));
}
// start handling metadata blocks
outbuf->dropped = 0;
outbuf->length = 0;
outbuf->mean_level = outbuf->mean_power = 0;
unsigned blocks_processed = 0;
unsigned samples_per_block = (uBladeRF.block_size - 16) / 4;
static bool overrun = true; // ignore initial overruns as we get up to speed
static bool first_buffer = true;
for (unsigned offset = 0; offset < Modes.sdr_buf_samples * 4; offset += uBladeRF.block_size) {
// read the next metadata header
uint8_t *header = ((uint8_t*) samples) + offset;
uint64_t metadata_magic = le32toh(*(uint32_t*) (header));
uint64_t metadata_timestamp = le64toh(*(uint64_t*) (header + 4));
uint32_t metadata_flags = le32toh(*(uint32_t*) (header + 12));
void *sample_data = header + 16;
if (metadata_magic != 0x12344321) {
// first buffer is often in the wrong mode
if (!first_buffer) {
fprintf(stderr, "bladeRF: wrong metadata header magic value, skipping rest of buffer\n");
}
break;
}
if (metadata_flags & BLADERF_META_STATUS_OVERRUN) {
if (!overrun) {
fprintf(stderr, "bladeRF: receive overrun\n");
}
overrun = true;
} else {
overrun = false;
}
#ifndef BROKEN_FPGA_METADATA
// this needs a fixed decimating FPGA image that handles the timestamp correctly
if (nextTimestamp && nextTimestamp != metadata_timestamp) {
// dropped data or lost sync. start again.
if (metadata_timestamp > nextTimestamp)
outbuf->dropped += (metadata_timestamp - nextTimestamp);
outbuf->dropped += outbuf->length;
outbuf->length = 0;
blocks_processed = 0;
outbuf->mean_level = outbuf->mean_power = 0;
nextTimestamp = metadata_timestamp;
}
#else
MODES_NOTUSED(metadata_timestamp);
#endif
if (!blocks_processed) {
// Compute the sample timestamp for the start of the block
outbuf->sampleTimestamp = nextTimestamp * 12e6 / Modes.sample_rate / uBladeRF.decimation;
}
// Convert a block of data
double mean_level, mean_power;
uBladeRF.converter(sample_data, &outbuf->data[Modes.trailing_samples + outbuf->length], samples_per_block, uBladeRF.converter_state, &mean_level, &mean_power);
outbuf->length += samples_per_block;
outbuf->mean_level += mean_level;
outbuf->mean_power += mean_power;
nextTimestamp += samples_per_block * uBladeRF.decimation;
++blocks_processed;
timeouts = 0;
}
first_buffer = false;
if (blocks_processed) {
// Get the approx system time for the start of this block
int64_t block_duration = 1e3 * outbuf->length / Modes.sample_rate;
outbuf->sysTimestamp -= block_duration;
outbuf->sysMicroseconds -= 1000 * block_duration;
outbuf->mean_level /= blocks_processed;
outbuf->mean_power /= blocks_processed;
// Push the new data to the demodulation thread
lockReader();
// accumulate CPU while holding the mutex, and restart measurement
end_cpu_timing(&thread_cpu, &Modes.reader_cpu_accumulator);
start_cpu_timing(&thread_cpu);
Modes.mag_buffers[next_free_buffer].dropped = 0;
Modes.mag_buffers[next_free_buffer].length = 0; // just in case
Modes.first_free_buffer = next_free_buffer;
wakeDecode();
unlockReader();
}
return samples;
}
void ubladeRFRun() {
if (!uBladeRF.device) {
return;
}
unsigned transfers = 7;
int status;
struct bladerf_stream *stream = NULL;
void **buffers = NULL;
if ((status = bladerf_init_stream(&stream,
uBladeRF.device,
handle_bladerf_samples,
&buffers,
/* num_buffers */ transfers,
BLADERF_FORMAT_SC16_Q11_META,
/* samples_per_buffer */ Modes.sdr_buf_samples,
/* num_transfers */ transfers,
/* user_data */ NULL)) < 0) {
fprintf(stderr, "bladerf_init_stream() failed: %s\n", bladerf_strerror(status));
goto out;
}
unsigned ms_per_transfer = 1000 * Modes.sdr_buf_samples / Modes.sample_rate;
if ((status = bladerf_set_stream_timeout(uBladeRF.device, BLADERF_MODULE_RX, ms_per_transfer * (transfers + 2))) < 0) {
fprintf(stderr, "bladerf_set_stream_timeout() failed: %s\n", bladerf_strerror(status));
goto out;
}
if ((status = bladerf_enable_module(uBladeRF.device, BLADERF_MODULE_RX, true) < 0)) {
fprintf(stderr, "bladerf_enable_module(RX, true) failed: %s\n", bladerf_strerror(status));
goto out;
}
start_cpu_timing(&thread_cpu);
timeouts = 0; // reset to zero when we get a callback with some data
retry:
if ((status = bladerf_stream(stream, BLADERF_MODULE_RX)) < 0) {
fprintf(stderr, "bladerf_stream() failed: %s\n", bladerf_strerror(status));
if (status == BLADERF_ERR_TIMEOUT) {
if (++timeouts < 5)
goto retry;
fprintf(stderr, "bladerf is wedged, giving up.\n");
}
goto out;
}
out:
if ((status = bladerf_enable_module(uBladeRF.device, BLADERF_MODULE_RX, false) < 0)) {
fprintf(stderr, "bladerf_enable_module(RX, false) failed: %s\n", bladerf_strerror(status));
}
if (stream) {
bladerf_deinit_stream(stream);
}
}
void ubladeRFClose() {
if (uBladeRF.converter) {
cleanup_converter(&uBladeRF.converter_state);
uBladeRF.converter = NULL;
}
if (uBladeRF.device) {
bladerf_close(uBladeRF.device);
uBladeRF.device = NULL;
}
}
|