1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// util.c: misc utilities
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This code is based on a detached fork of dump1090-fa.
//
// Copyright (c) 2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// This file incorporates work covered by the following copyright and
// license:
//
// Copyright (C) 2012 by Salvatore Sanfilippo <antirez@gmail.com>
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "readsb.h"
#include <sys/resource.h>
int64_t mstime(void) {
if (Modes.synthetic_now)
return Modes.synthetic_now;
struct timeval tv;
int64_t mst;
gettimeofday(&tv, NULL);
mst = ((int64_t) tv.tv_sec)*1000;
mst += tv.tv_usec / 1000;
return mst;
}
int64_t microtime(void) {
if (Modes.synthetic_now)
return 1000 * Modes.synthetic_now;
struct timeval tv;
int64_t mst;
gettimeofday(&tv, NULL);
mst = ((int64_t) tv.tv_sec) * 1000LL * 1000LL;
mst += tv.tv_usec;
return mst;
}
void milli_micro_seconds(int64_t *milli, int64_t *micro) {
if (Modes.synthetic_now) {
*milli = Modes.synthetic_now;
*micro = 1000 * Modes.synthetic_now;
return;
}
struct timeval tv;
gettimeofday(&tv, NULL);
*milli = ((int64_t) tv.tv_sec) * 1000 + ((int64_t) tv.tv_usec) / 1000;
*micro = ((int64_t) tv.tv_sec) * (1000 * 1000) + ((int64_t) tv.tv_usec);
}
int64_t mono_micro_seconds() {
if (Modes.synthetic_now) {
return 1000 * Modes.synthetic_now;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
int64_t micro = ((int64_t) ts.tv_sec) * (1000 * 1000) + ((int64_t) ts.tv_nsec) / 1000;
return micro;
}
int64_t mono_milli_seconds() {
if (Modes.synthetic_now) {
return Modes.synthetic_now;
}
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
int64_t milli = ((int64_t) ts.tv_sec) * 1000 + ((int64_t) ts.tv_nsec) / (1000 * 1000);
return milli;
}
int64_t getUptime() {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
int64_t milli = ((int64_t) ts.tv_sec) * 1000 + ((int64_t) ts.tv_nsec) / (1000 * 1000);
return milli - Modes.startup_time_mono;
}
int snprintHMS(char *buf, size_t bufsize, int64_t now) {
time_t nowTime = nearbyint(now / 1000.0);
struct tm local;
localtime_r(&nowTime, &local);
char timebuf[128];
strftime(timebuf, 128, "%T", &local);
return snprintf(buf, bufsize, "%s.%03d", timebuf, (int) (now % 1000));
}
int64_t msThreadTime(void) {
struct timespec ts;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
return ((int64_t) ts.tv_sec * 1000 + ts.tv_nsec / (1000 * 1000));
}
int64_t nsThreadTime(void) {
struct timespec ts;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts);
return ((int64_t) ts.tv_sec * (1000LL * 1000LL * 1000LL) + ts.tv_nsec);
}
int64_t receiveclock_ns_elapsed(int64_t t1, int64_t t2) {
return (t2 - t1) * 1000U / 12U;
}
int64_t receiveclock_ms_elapsed(int64_t t1, int64_t t2) {
return (t2 - t1) / 12000U;
}
/* record current CPU time in start_time */
void start_cpu_timing(struct timespec *start_time) {
clock_gettime(CLOCK_THREAD_CPUTIME_ID, start_time);
}
/* add difference between start_time and the current CPU time to add_to */
void end_cpu_timing(const struct timespec *start_time, struct timespec *add_to) {
struct timespec end_time;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &end_time);
add_to->tv_sec += end_time.tv_sec - start_time->tv_sec;
add_to->tv_nsec += end_time.tv_nsec - start_time->tv_nsec;
normalize_timespec(add_to);
}
void timespec_add_elapsed(const struct timespec *start_time, const struct timespec *end_time, struct timespec *add_to) {
add_to->tv_sec += end_time->tv_sec - start_time->tv_sec;
add_to->tv_nsec += end_time->tv_nsec - start_time->tv_nsec;
normalize_timespec(add_to);
}
void start_monotonic_timing(struct timespec *start_time) {
clock_gettime(CLOCK_MONOTONIC, start_time);
}
void end_monotonic_timing(const struct timespec *start_time, struct timespec *add_to) {
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &end_time);
add_to->tv_sec += end_time.tv_sec - start_time->tv_sec;
add_to->tv_nsec += end_time.tv_nsec - start_time->tv_nsec;
normalize_timespec(add_to);
}
/* record current monotonic time in start_time */
void startWatch(struct timespec *start_time) {
clock_gettime(CLOCK_MONOTONIC, start_time);
}
// return elapsed time
int64_t stopWatch(struct timespec *start_time) {
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &end_time);
int64_t res = ((int64_t) end_time.tv_sec * 1000UL + end_time.tv_nsec / 1000000UL)
- ((int64_t) start_time->tv_sec * 1000UL + start_time->tv_nsec / 1000000UL);
return res;
}
// return elapsed time and set start_time to current time
int64_t lapWatch(struct timespec *start_time) {
struct timespec end_time;
clock_gettime(CLOCK_MONOTONIC, &end_time);
int64_t res = ((int64_t) end_time.tv_sec * 1000UL + end_time.tv_nsec / 1000000UL)
- ((int64_t) start_time->tv_sec * 1000UL + start_time->tv_nsec / 1000000UL);
if (start_time->tv_sec == 0 && start_time->tv_nsec == 0) {
res = 0;
}
*start_time = end_time;
return res;
}
// this is not cryptographic but much better than mstime() as a seed
unsigned int get_seed() {
struct timespec time;
clock_gettime(CLOCK_REALTIME, &time);
unsigned int seed = (uint64_t) time.tv_sec ^ (uint64_t) time.tv_nsec ^ (((uint64_t) getpid()) << 16) ^ (((uint64_t) (uintptr_t) pthread_self()) << 10);
return seed;
}
// increment target by increment in ms, if result is in the past, set target to now.
// specialized function for scheduling threads using pthreadcondtimedwait
static void incTimedwait(struct timespec *target, int64_t increment) {
struct timespec inc = msToTimespec(increment);
target->tv_sec += inc.tv_sec;
target->tv_nsec += inc.tv_nsec;
normalize_timespec(target);
struct timespec now;
clock_gettime(CLOCK_REALTIME, &now);
int64_t min_sleep = 50 * 1000; // always wait a bit (50 us) to yield (i hope)
if (target->tv_sec < now.tv_sec || (target->tv_sec == now.tv_sec && target->tv_nsec <= now.tv_nsec + min_sleep)) {
target->tv_sec = now.tv_sec;
target->tv_nsec = now.tv_nsec + min_sleep;
normalize_timespec(target);
}
}
#define uThreadMax (32)
static threadT *uThreads[uThreadMax];
static int uThreadCount = 0;
void threadInit(threadT *thread, char *name) {
if (uThreadCount >= uThreadMax) {
fprintf(stderr, "util.c: increase uThreadmax!\n");
exit(1);
}
if (uThreadCount == 0) {
memset(uThreads, 0, sizeof (uThreads));
}
memset(thread, 0, sizeof (threadT));
pthread_mutex_init(&thread->mutex, NULL);
pthread_cond_init(&thread->cond, NULL);
thread->name = strdup(name);
uThreads[uThreadCount++] = thread;
thread->joined = 1;
}
void threadCreate(threadT *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg) {
if (!thread->joined) {
fprintf(stderr, "<3>FATAL: threadCreate() thread %s failed: already running?\n", thread->name);
setExit(2);
}
int res = pthread_create(&thread->pthread, attr, start_routine, arg);
if (res != 0) {
fprintf(stderr, "<3>FATAL: threadCreate() pthread_create() failed: %s\n", strerror(res));
setExit(2);
}
thread->joined = 0;
thread->joinFailed = 0;
}
static void threadDestroy(threadT *thread) {
// if the join didn't work, don't clean up
if (!thread->joined || thread->joinFailed) {
fprintf(stderr, "<3>FATAL: thread %s could not be joined, calling abort()!\n", thread->name);
abort();
}
pthread_mutex_destroy(&thread->mutex);
pthread_cond_destroy(&thread->cond);
sfree(thread->name);
}
void threadDestroyAll() {
for (int i = 0; i < uThreadCount; i++) {
threadDestroy(uThreads[i]);
}
uThreadCount = 0;
}
void threadTimedWait(threadT *thread, struct timespec *ts, int64_t increment) {
// don't wait when we want to exit
if (Modes.exit)
return;
incTimedwait(ts, increment);
int err = pthread_cond_timedwait(&thread->cond, &thread->mutex, ts);
if (err && err != ETIMEDOUT)
fprintf(stderr, "%s thread: pthread_cond_timedwait unexpected error: %s\n", thread->name, strerror(err));
}
void threadSignalJoin(threadT *thread) {
if (thread->joined)
return;
int err = 0;
#ifdef __APPLE__
pthread_join(thread->pthread, NULL);
#else
int64_t timeout = Modes.joinTimeout;
while ((err = pthread_tryjoin_np(thread->pthread, NULL)) && timeout-- > 0) {
pthread_cond_signal(&thread->cond);
msleep(1);
}
#endif
if (err == 0) {
thread->joined = 1;
} else {
thread->joinFailed = 1;
fprintf(stderr, "%s thread: threadSignalJoin timed out after %.1f seconds, undefined behaviour may result!\n", thread->name, (float) Modes.joinTimeout / (float) SECONDS);
Modes.joinTimeout /= 2;
Modes.joinTimeout = imax(Modes.joinTimeout, 2 * SECONDS);
}
}
int threadAffinity(int core_id) {
int num_cores = Modes.num_procs;
if (core_id < 0 || core_id >= num_cores)
return EINVAL;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
CPU_SET(core_id, &cpuset);
return sched_setaffinity(0, sizeof(cpu_set_t), &cpuset);
}
struct char_buffer readWholeFile(int fd, char *errorContext) {
struct char_buffer cb = {0};
struct stat fileinfo = {0};
if (fstat(fd, &fileinfo)) {
fprintf(stderr, "%s: readWholeFile: fstat failed, wat?!\n", errorContext);
return cb;
}
size_t fsize = fileinfo.st_size;
int extra = 128 * 1024;
cb.buffer = cmalloc(fsize + extra);
memset(cb.buffer, 0x0, fsize + extra); // zero entire buffer
if (!cb.buffer) {
fprintf(stderr, "%s: readWholeFile couldn't allocate buffer!\n", errorContext);
return cb;
}
int64_t res = 0;
int toRead = fsize;
cb.len = 0;
while (toRead >= 0) {
res = read(fd, cb.buffer + cb.len, toRead);
if (res <= 0) {
if (errno == EINTR) {
continue;
}
break;
}
cb.len += res;
toRead -= res;
}
if (fstat(fd, &fileinfo)) {
fprintf(stderr, "%s: readWholeFile: fstat failed, wat?!\n", errorContext);
sfree(cb.buffer);
cb.len = 0;
}
if (toRead < 0 || res < 0 || cb.len != fsize || (size_t) fileinfo.st_size != fsize) {
fprintf(stderr, "%s: readWholeFile size mismatch! toRead %ld res %ld %s cb.len %ld fsize %ld fileinfo.st_size %ld\n",
errorContext, (long) toRead, (long) res, strerror(res), (long) cb.len, (long) fsize, (long) fileinfo.st_size);
sfree(cb.buffer);
cb.len = 0;
}
return cb;
}
struct char_buffer readWholeGz(gzFile gzfp, char *errorContext) {
struct char_buffer cb = {0};
if (gzbuffer(gzfp, GZBUFFER_BIG) < 0) {
fprintf(stderr, "reading %s: gzbuffer fail!\n", errorContext);
}
int alloc = 1 * 1024 * 1024;
cb.buffer = cmalloc(alloc);
if (!cb.buffer) {
fprintf(stderr, "reading %s: readWholeGz alloc fail!\n", errorContext);
return cb;
}
int res;
int toRead = alloc;
while (true) {
res = gzread(gzfp, cb.buffer + cb.len, toRead);
if (res <= 0)
break;
cb.len += res;
toRead -= res;
if (toRead == 0) {
alloc *= 2;
char *oldBuffer = cb.buffer;
cb.buffer = realloc(cb.buffer, alloc);
if (!cb.buffer) {
sfree(oldBuffer);
fprintf(stderr, "reading %s: readWholeGz alloc fail!\n", errorContext);
return (struct char_buffer) {0};
}
toRead = alloc - cb.len;
}
}
if (res < 0) {
sfree(cb.buffer);
int error;
fprintf(stderr, "readWholeGz: gzread failed: %s (res == %d)\n", gzerror(gzfp, &error), res);
if (error == Z_ERRNO)
perror(errorContext);
return (struct char_buffer) {0};
}
return cb;
}
// wrapper to write to an opened gzFile
int writeGz(gzFile gzfp, void *source, int toWrite, char *errorContext) {
int res, error;
int nwritten = 0;
char *p = source;
if (!gzfp) {
fprintf(stderr, "writeGz: gzfp was NULL .............\n");
return -1;
}
while (toWrite > 0) {
int len = toWrite;
//if (len > 8 * 1024 * 1024)
// len = 8 * 1024 * 1024;
res = gzwrite(gzfp, p, len);
if (res <= 0) {
fprintf(stderr, "gzwrite of length %d failed: %s (res == %d)\n", toWrite, gzerror(gzfp, &error), res);
if (error == Z_ERRNO)
perror(errorContext);
return -1;
}
p += res;
nwritten += res;
toWrite -= res;
}
return nwritten;
}
void printTimestamp(FILE *stream, int64_t time_ms) {
char timebuf[128];
char timebuf2[128];
time_t now;
struct tm local;
now = floor(time_ms / 1000.0);
localtime_r(&now, &local);
strftime(timebuf, 128, "%Y-%m-%d %T", &local);
timebuf[127] = 0;
strftime(timebuf2, 128, "%Z", &local);
timebuf2[127] = 0;
fprintf(stream, "[%s.%03d %s] ", timebuf, (int) (time_ms % 1000), timebuf2);
}
void log_with_timestamp(const char *format, ...) {
char msg[1024];
va_list ap;
va_start(ap, format);
vsnprintf(msg, 1024, format, ap);
va_end(ap);
msg[1023] = 0;
printTimestamp(stderr, mstime());
fprintf(stderr, "%s\n", msg);
}
int64_t roundSeconds(int interval, int offset, int64_t epoch_ms) {
if (offset >= interval)
fprintf(stderr, "roundSeconds was used wrong, interval must be greater than offset\n");
time_t epoch = epoch_ms / SECONDS + (epoch_ms % SECONDS >= SECONDS / 2);
struct tm utc;
gmtime_r(&epoch, &utc);
int sec = utc.tm_sec;
int step = nearbyint((sec - offset) / (float) interval);
int calc = offset + step * interval;
//fprintf(stderr, "%d %d\n", sec, calc);
return (epoch + (calc - sec)) * SECONDS;
}
ssize_t check_write(int fd, const void *buf, size_t count, const char *error_context) {
ssize_t res = write(fd, buf, count);
if (res < 0)
perror(error_context);
else if (res != (ssize_t) count)
fprintf(stderr, "%s: Only %zd of %zd bytes written!\n", error_context, res, count);
return res;
}
int my_epoll_create(int *event_fd_ptr) {
int fd = epoll_create(32); // argument positive, ignored
if (fd == -1) {
perror("FATAL: epoll_create() failed:");
exit(1);
}
// if an invalid event_fd is passed, ignore it (apple)
if (*event_fd_ptr >= 0) {
// add exit signaling eventfd, we want that for all our epoll fds
struct epoll_event epollEvent = { .events = EPOLLIN, .data = { .ptr = event_fd_ptr }};
if (epoll_ctl(fd, EPOLL_CTL_ADD, *event_fd_ptr, &epollEvent)) {
perror("epoll_ctl fail:");
exit(1);
}
}
return fd;
}
void epollAllocEvents(struct epoll_event **events, int *maxEvents) {
if (!*events) {
*maxEvents = 32;
} else if (*maxEvents > 9000) {
return;
} else {
*maxEvents *= 2;
}
sfree(*events);
*events = cmalloc(*maxEvents * sizeof(struct epoll_event));
if (!*events) {
fprintf(stderr, "Fatal: epollAllocEvents malloc\n");
exit(1);
}
}
char *sprint_uuid1_partial(uint64_t id1, char *p) {
for (int i = 7; i >= 0; i--) {
//int j = 7 - i;
//if (j == 4)
//*p++ = '-';
uint64_t val = (id1 >> (4 * i)) & 15;
if (val > 9)
*p++ = val - 10 + 'a';
else
*p++ = val + '0';
}
*p = '\0';
return p;
}
char *sprint_uuid1(uint64_t id1, char *p) {
for (int i = 15; i >= 0; i--) {
int j = 15 - i;
if (j == 8 || j == 12)
*p++ = '-';
uint64_t val = (id1 >> (4 * i)) & 15;
if (val > 9)
*p++ = val - 10 + 'a';
else
*p++ = val + '0';
}
*p = '\0';
return p;
}
char *sprint_uuid2(uint64_t id2, char *p) {
for (int i = 15; i >= 0; i--) {
int j = 15 - i;
if (j == 0 || j == 4)
*p++ = '-';
uint64_t val = (id2 >> (4 * i)) & 15;
if (val > 9)
*p++ = val - 10 + 'a';
else
*p++ = val + '0';
}
*p = '\0';
return p;
}
char *sprint_uuid(uint64_t id1, uint64_t id2, char *p) {
p = sprint_uuid1(id1, p);
p = sprint_uuid2(id2, p);
*p = '\0';
return p;
}
int mkdir_error(const char *path, mode_t mode, FILE *err_stream) {
int err = mkdir(path, mode);
if (err != 0 && errno != EEXIST && err_stream) {
fprintf(err_stream, "mkdir %s: %s\n", path, strerror(errno));
}
return err;
}
// Distance between points on a spherical earth.
// This has up to 0.5% error because the earth isn't actually spherical
// (but we don't use it in situations where that matters)
// define for testing some approximations:
#define DEGR (0.017453292519943295) // 1 degree in radian
double greatcircle(double lat0, double lon0, double lat1, double lon1, int approx) {
if (lat0 == lat1 && lon0 == lon1) {
return 0;
}
// toRad converts degrees to radians
lat0 = toRad(lat0);
lon0 = toRad(lon0);
lat1 = toRad(lat1);
lon1 = toRad(lon1);
double dlat = fabs(lat1 - lat0);
double dlon = fabs(lon1 - lon0);
double hav = 0;
if (CHECK_APPROXIMATIONS) {
double a = sin(dlat / 2) * sin(dlat / 2) + cos(lat0) * cos(lat1) * sin(dlon / 2) * sin(dlon / 2);
hav = 6371e3 * 2 * atan2(sqrt(a), sqrt(1.0 - a));
}
// after checking this isn't necessary with doubles
// anyhow for small distance we can do a much cheaper approximation:
// anyhow, nice formular let's leave it in the code for reference
// for small distances the earth is flat enough that we can use this approximation
// don't use this approximation near the poles, would probably behave poorly
//
// in our particular case many calls of this function are by speed_check which usually is small distances
// thus having less trigonometric functions used should be a performance gain
//
// difference to haversine is less than 0.04 percent for up to 3 degrees of lat/lon difference
// this isn't an issue for us and due to the oblateness and this calculation taking it into account, this calculation might actually be more accurate for small distances but i can't be bothered to check.
//
if (approx || (dlat < 3 * DEGR && dlon < 3 * DEGR && fabs(lat1) < 80 * DEGR)) {
// calculate the equivalent length of the latitude and longitude difference
// use pythagoras to get the distance
// Equatorial radius: e = (6378.1370 km) -> circumference: 2 * pi * e = 40 075.016 km
// Polar radius: p = (6356.7523 km) -> quarter meridian from wiki: 10 001.965 km
// float ec = 40075016; // equatorial circumerence
// float mc = 4 * 10001965; // meridial circumference
// to have consistency to other calculations, use a circular earth
/*
float ec = 2 * M_PI * 6371e3; // equatorial circumference
float mc = 2 * M_PI * 6371e3; // meridial circumference
float dmer = (float) dlat / (2 * M_PI) * mc;
float dequ = (float) dlon / (2 * M_PI) * ec * cosf(avglat);
*/
// eliminate 2 * M_PI
float avglat = (float) lat0 + ((float) lat1 - (float) lat0) * 0.5f;
float dmer = (float) dlat * 6371e3f;
float dequ = (float) dlon * 6371e3f * cosf(avglat);
float pyth = sqrtf(dmer * dmer + dequ * dequ);
if (!approx && CHECK_APPROXIMATIONS) {
double errorPercent = fabs(hav - pyth) / hav * 100;
if (errorPercent > 0.03) {
fprintf(stderr, "pos: %.1f, %.1f dlat: %.5f dlon %.5f hav: %.1f errorPercent: %.3f\n", toDeg(lat0), toDeg(lon0), toDeg(dlat), toDeg(dlon), hav, errorPercent);
}
}
return pyth;
}
// spherical law of cosines
// use float calculations if latitudes differ sufficiently
if (dlat > 1 * DEGR && dlon > 1 * DEGR) {
// error
double slocf = 6371e3f * acosf(sinf(lat0) * sinf(lat1) + cosf(lat0) * cosf(lat1) * cosf(dlon));
if (CHECK_APPROXIMATIONS) {
double errorPercent = fabs(hav - slocf) / hav * 100;
if (errorPercent > 0.025) {
fprintf(stderr, "pos: %.1f, %.1f dlat: %.5f dlon %.5f hav: %.1f errorPercent: %.3f\n", toDeg(lat0), toDeg(lon0), toDeg(dlat), toDeg(dlon), hav, errorPercent);
}
}
return slocf;
}
double sloc = 6371e3 * acos(sin(lat0) * sin(lat1) + cos(lat0) * cos(lat1) * cos(dlon));
if (CHECK_APPROXIMATIONS) {
double errorPercent = fabs(hav - sloc) / hav * 100;
if (errorPercent > 0.025) {
fprintf(stderr, "pos: %.1f, %.1f dlat: %.5f dlon %.5f sloc: %.1f errorPercent: %.3f\n", toDeg(lat0), toDeg(lon0), toDeg(dlat), toDeg(dlon), sloc, errorPercent);
}
}
return sloc;
}
double bearing(double lat0, double lon0, double lat1, double lon1) {
lat0 = toRad(lat0);
lon0 = toRad(lon0);
lat1 = toRad(lat1);
lon1 = toRad(lon1);
float y = sinf(lon1-lon0)*cosf(lat1);
float x = cosf(lat0)*sinf(lat1) - sinf(lat0)*cosf(lat1)*cosf(lon1-lon0);
float res = toDegf(atan2f(y, x)) + 360.0f;
if (CHECK_APPROXIMATIONS) {
// check against using double trigonometric functions
// errors greater than 0.5 are rare and only happen for small distances
// bearings derived from small distances don't need to be accurate at all for our purposes
double y = sin(lon1-lon0)*cos(lat1);
double x = cos(lat0)*sin(lat1) - sin(lat0)*cos(lat1)*cos(lon1-lon0);
double res2 = (atan2(y, x) * (180 / M_PI) + 360);
double diff = fabs(res2 - res);
double dist = greatcircle(toDeg(lat0), toDeg(lon0), toDeg(lat1), toDeg(lon1), 1);
if ((diff > 0.2 && dist > 150) || diff > 2) {
fprintf(stderr, "errorDeg: %.2f %.2f %.2f dist: %.2f km\n",
diff, res, res2, dist / 1000.0);
}
}
while (res > 360)
res -= 360;
return res;
}
#undef DEGR
// allocate a group of task_info
task_group_t *allocate_task_group(uint32_t count) {
task_group_t *group = cmalloc(sizeof(task_group_t));
group->task_count = count;
group->infos = cmalloc(count * sizeof(readsb_task_t));
memset(group->infos, 0x0, count * sizeof(readsb_task_t));
/*
for (uint32_t k = 0; k < count; k++) {
readsb_task_t *info = &group->infos[k];
info->buffer_count = buffer_count;
info->buffers = cmalloc(buffer_count * sizeof(buffer_t));
memset(info->buffers, 0x0, buffer_count * sizeof(buffer_t));
}
*/
group->tasks = cmalloc(count * sizeof(threadpool_task_t));
memset(group->tasks, 0x0, count * sizeof(threadpool_task_t));
return group;
}
// destroy a group of task_info
void destroy_task_group(task_group_t *group) {
/*
for (uint32_t k = 0; k < group->task_count; k++) {
readsb_task_t *info = &group->infos[k];
for (uint32_t j = 0; j < info->buffer_count; j++) {
free(info->buffers[j].buf);
}
free(info->buffers);
}
*/
free(group->infos);
free(group->tasks);
memset(group, 0x0, sizeof(task_group_t));
free(group);
}
void threadpool_distribute_and_run(threadpool_t *pool, task_group_t *task_group, threadpool_function_t func, int totalRange, int taskCount, int64_t now) {
if (taskCount == 0 || taskCount > (int) task_group->task_count) {
taskCount = task_group->task_count;
}
threadpool_task_t *tasks = task_group->tasks;
readsb_task_t *infos = task_group->infos;
int section_len = totalRange / taskCount;
int extra = totalRange % taskCount;
int p = 0;
int actualTaskCount = 0;
// assign tasks
for (int i = 0; i < taskCount; i++) {
threadpool_task_t *task = &tasks[i];
readsb_task_t *range = &infos[i];
range->now = now;
range->from = p;
p += section_len;
if (extra) {
p++;
extra--;
}
range->to = p;
if (range->from == range->to) {
break;
}
task->function = func;
task->argument = range;
actualTaskCount++;
//fprintf(stderr, "%d %d\n", range->from, range->to);
}
if (p != totalRange) {
fprintf(stderr, "threadpool_distribute_and_run: range distribution error: p: %d totalRange: %d\n", p, totalRange);
}
threadpool_run(pool, tasks, actualTaskCount);
}
void gzipFile(char *filename) {
int fd;
char fileGz[PATH_MAX];
gzFile gzfp;
// read uncompressed file into buffer
fd = open(filename, O_RDONLY);
if (fd < 0) {
return;
}
struct char_buffer cb = readWholeFile(fd, filename);
close(fd);
if (!cb.buffer) {
fprintf(stderr, "gzipFile readWholeFile failed: %s\n", filename);
return;
}
snprintf(fileGz, PATH_MAX, "%s.gz", filename);
gzfp = gzopen(fileGz, "wb");
if (!gzfp) {
fprintf(stderr, "gzopen failed:");
perror(fileGz);
return;
}
gzbuffer(gzfp, GZBUFFER_BIG);
int res = gzsetparams(gzfp, 9, Z_DEFAULT_STRATEGY);
if (res < 0) {
fprintf(stderr, "gzsetparams fail: %d", res);
}
if (cb.len > 0) {
writeGz(gzfp, cb.buffer, cb.len, fileGz);
}
sfree(cb.buffer);
cb.len = 0;
if (gzclose(gzfp) != Z_OK) {
fprintf(stderr, "compressACAS gzclose failed: %s\n", fileGz);
unlink(fileGz);
return;
}
}
void check_grow_buffer_t(buffer_t *buffer, ssize_t newSize) {
if (buffer->bufSize < newSize) {
sfree(buffer->buf);
buffer->buf = cmalloc(newSize);
}
}
void *check_grow_threadpool_buffer_t(threadpool_buffer_t *buffer, ssize_t newSize) {
if (buffer->size < newSize || !buffer->buf) {
//fprintf(stderr, "check_grow_threadpool_buffer: buffer->size %ld requested size %ld\n", (long) buffer->size, (long) newSize);
sfree(buffer->buf);
buffer->buf = cmalloc(newSize);
if (!buffer->buf) {
fprintf(stderr, "<3>FATAL: check_grow_threadpool_buffer_t no enough memory allocating %ld bytes!\n", (long) newSize);
abort();
}
buffer->size = newSize;
}
return buffer->buf;
}
struct char_buffer generateZstd(ZSTD_CCtx* cctx, threadpool_buffer_t *pbuffer, struct char_buffer src, int level) {
struct char_buffer cb;
size_t dstCapacity = (ZSTD_compressBound(src.len) / 1024 + 1) * 1024;
check_grow_threadpool_buffer_t(pbuffer, dstCapacity);
if (Modes.debug_zstd) {
fprintf(stderr, "calling ZSTD_compressCCtx() with cctx %p dstCapacity %6zd"
" src.buffer %p src.len %6ld level %d src.buffer[0] 0x%02x cctx_first_byte 0x%02x\n"
, cctx, dstCapacity,
src.buffer, (long) src.len, level, (uint8_t) src.buffer[0], (uint8_t) ((uint8_t *) cctx)[0]
);
}
/*
* size_t ZSTD_compressCCtx(ZSTD_CCtx* cctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel);
*/
size_t compressedSize = ZSTD_compressCCtx(cctx,
pbuffer->buf, dstCapacity,
src.buffer, src.len,
level);
if (Modes.debug_zstd) {
fprintf(stderr, "calling ZSTD_isError() with compressedSize: %zd\n", compressedSize);
}
if (ZSTD_isError(compressedSize)) {
fprintf(stderr, "generateZstd() zstd error: %s\n", ZSTD_getErrorName(compressedSize));
cb.buffer = NULL;
cb.len = 0;
return cb;
}
cb.len = compressedSize;
cb.buffer = pbuffer->buf;
return cb;
}
struct char_buffer ident(struct char_buffer target) {
return target;
}
void setLowestPriorityPthread() {
#ifndef __linux__
return;
#endif
//fprintf(stderr, "priority before: %d\n", (int) getpriority(PRIO_PROCESS, 0));
setpriority(PRIO_PROCESS, 0, 10 + getpriority(PRIO_PROCESS, 0));
//fprintf(stderr, "priority after: %d\n", (int) getpriority(PRIO_PROCESS, 0));
return;
int policy;
struct sched_param param = { 0 };
pthread_getschedparam(pthread_self(), &policy, ¶m);
fprintf(stderr, "priority before: %d\n", (int) param.sched_priority);
policy=SCHED_FIFO;
int priority_max = sched_get_priority_max(policy);
int priority_min = sched_get_priority_min(policy);
fprintf(stderr, "min prio: %d max prio: %d\n", priority_min, priority_max);
param.sched_priority = priority_min;
pthread_setschedparam(pthread_self(), policy, ¶m);
pthread_getschedparam(pthread_self(), &policy, ¶m);
fprintf(stderr, "priority after: %d\n", (int) param.sched_priority);
}
void setPriorityPthread() {
#ifndef __linux__
return;
#endif
setpriority(PRIO_PROCESS, 0, -5 + getpriority(PRIO_PROCESS, 0));
int policy = SCHED_FIFO;
struct sched_param param = { 0 };
param.sched_priority = sched_get_priority_min(policy);
pthread_setschedparam(pthread_self(), policy, ¶m);
}
zstd_fw_t *createZstdFw(size_t inBufSize) {
zstd_fw_t *fw = cmalloc(sizeof(zstd_fw_t));
memset(fw, 0x0, sizeof(zstd_fw_t));
fw->in.src = cmalloc(inBufSize);
fw->inAlloc = inBufSize;
fw->in.size = 0;
fw->in.pos = 0;
int outBufSize = ZSTD_compressBound(inBufSize);
fw->out.dst = cmalloc(outBufSize);
fw->out.size = outBufSize;
fw->out.pos = 0;
//fw->cctx = ZSTD_createCCtx();
fw->cstream = ZSTD_createCStream();
fw->fd = -1;
return fw;
}
void destroyZstdFw(zstd_fw_t *fw) {
//ZSTD_freeCCtx(fw->cctx);
ZSTD_freeCStream(fw->cstream);
free((void *) fw->in.src);
free((void *) fw->out.dst);
free(fw);
}
static size_t zstdFwAvailable(zstd_fw_t *fw) {
return fw->inAlloc - fw->in.size;
}
static void zstdFwWrite(zstd_fw_t *fw) {
if (fw->fd < 0) {
return;
}
check_write(fw->fd, fw->out.dst, fw->out.pos, fw->outFile);
fw->out.pos = 0;
}
static void zstdFwCompress(zstd_fw_t *fw) {
if (fw->in.size == 0) {
return;
}
if (fw->fd < 0) {
return;
}
size_t res;
// fw->in buffer is full, let's compress it
//res = ZSTD_compressStream2(fw->cctx, &fw->out, &fw->in, ZSTD_e_flush);
res = ZSTD_compressStream(fw->cstream, &fw->out, &fw->in);
if (ZSTD_isError(res)) {
fprintf(stderr, "ZSTD_compressStream failed: %ld %s\n", (long) res, ZSTD_getErrorName(res));
}
/*
res = ZSTD_flushStream(fw->cstream, &fw->out);
if (ZSTD_isError(res)) {
fprintf(stderr, "ZSTD_flushStream failed: %s\n", ZSTD_getErrorName(res));
}
*/
if (fw->in.size != fw->in.pos) {
fprintf(stderr, "<3>BAD: ohB6ooVi %ld %ld %ld\n", (long) fw->in.size, (long) fw->in.pos, (long) res);
}
fw->in.size = 0;
fw->in.pos = 0;
zstdFwWrite(fw);
}
void zstdFwStartFile(zstd_fw_t *fw, const char *outFile, int compressionLvl) {
fw->in.pos = 0;
fw->in.size = 0;
fw->out.pos = 0;
size_t res;
//ZSTD_CCtx_reset(fw->cctx, ZSTD_reset_session_and_parameters);
//ZSTD_CCtx_setParameter(fw->cctx, ZSTD_c_compressionLevel, compressionLvl);
res = ZSTD_initCStream(fw->cstream, compressionLvl);
if (ZSTD_isError(res)) {
fprintf(stderr, "ZSTD_initCStream failed: %s\n", ZSTD_getErrorName(res));
}
fw->outFile = outFile;
if (!fw->outFile) {
fprintf(stderr, "zstdFwStartFile(): outFile null!\n");
}
fw->fd = open(fw->outFile, O_WRONLY | O_CREAT | O_APPEND, 0644);
if (fw->fd < 0) {
fprintf(stderr, "zstdFwStartFile(): open failed: %s\n", strerror(errno));
}
}
void zstdFwFinishFile(zstd_fw_t *fw) {
zstdFwCompress(fw);
//size_t res = ZSTD_compressStream2(fw->cctx, &fw->out, &fw->in, ZSTD_e_end);
size_t res = ZSTD_endStream(fw->cstream, &fw->out);
if (res != 0) {
fprintf(stderr, "ZSTD_endStream failed: %ld %s\n", (long) res, ZSTD_getErrorName(res));
}
zstdFwWrite(fw);
close(fw->fd);
}
void zstdFwPutData(zstd_fw_t *fw, const uint8_t *data, size_t len) {
if (fw->fd < 0) {
return;
}
size_t remaining = len;
const uint8_t *p = data;
while (remaining > 0) {
if (zstdFwAvailable(fw) == 0) {
zstdFwCompress(fw);
}
size_t bytes = imin(zstdFwAvailable(fw), remaining);
memcpy((char *)(fw->in.src + fw->in.size), p, bytes);
fw->in.size += bytes;
remaining -= bytes;
p += bytes;
}
}
void dump_beast_check(int64_t now) {
if (!Modes.dump_fw) {
return;
}
int32_t index = now / (Modes.dump_interval * SECONDS);
if (Modes.dump_beast_index == index) {
return;
}
// finish old file
zstd_fw_t *fw = Modes.dump_fw;
if (fw->fd >= 0) {
zstdFwFinishFile(fw);
}
int startup = (Modes.dump_beast_index < 0);
Modes.dump_beast_index = index;
time_t nowish = index * Modes.dump_interval;
struct tm utc;
gmtime_r(&nowish, &utc);
char tstring[100];
strftime (tstring, 100, "%H%M%S", &utc);
char pathbuf[PATH_MAX];
snprintf(pathbuf, PATH_MAX, "%s/%sZ.zst", Modes.dump_beast_dir, tstring);
// unless we just restarted, delete the file
if (!startup) {
unlink(pathbuf);
}
// start new file
zstdFwStartFile(fw, pathbuf, Modes.dump_compressionLevel);
//fprintf(stderr, "dump_beast started file: %s\n", pathbuf);
}
// get the first <maxTokens> tokens from a string separated by any bytes in <delim> and place them in the provided char pointer array tokens
// the array of token pointers is set to NULL before populating it
// stringp / delim work just like strsep(3), this is just a wrapper to easily extract multiple tokens from a string
// the pointer pointed at by stringp WILL NOT be modified
// the string pointed at by stringp WILL be modified
int32_t tokenize(char **restrict stringp, char *restrict delim, char **restrict tokens, int maxTokens) {
memset(tokens, 0x0, sizeof(char *) * maxTokens);
int32_t k = 0;
char *p = *stringp;
while (k < maxTokens) {
tokens[k] = strsep(&p, delim);
if (!tokens[k]) {
break;
}
k++;
}
return k;
}
void spinLock(volatile atomic_int *lock) {
atomic_int expected;
int calls = 0;
do {
expected = 0;
calls++;
} while (!atomic_compare_exchange_weak(lock, &expected, 1));
if (0 && calls > 1000) {
fprintf(stderr, "cas_weak calls %5d %8ld\n", calls, (long) pthread_self());
}
}
void spinRelease(volatile atomic_int *lock) {
atomic_store(lock, 0);
}
|