1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
// Part of readsb, a Mode-S/ADSB/TIS message decoder.
//
// track.h: aircraft state tracking prototypes
//
// Copyright (c) 2019 Michael Wolf <michael@mictronics.de>
//
// This code is based on a detached fork of dump1090-fa.
//
// Copyright (c) 2015 Oliver Jowett <oliver@mutability.co.uk>
//
// This file is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// any later version.
//
// This file is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef DUMP1090_UTIL_H
#define DUMP1090_UTIL_H
#define CHECK_APPROXIMATIONS (0)
#define GZBUFFER_BIG (512 * 1024)
#include <stdint.h>
#include <stdatomic.h>
#define sfree(x) do { free(x); x = NULL; } while (0)
#define HOURS (60*60*1000LL)
#define MINUTES (60*1000LL)
#define SECONDS (1000LL)
#define MS (1LL)
#define memberSize(type, member) (sizeof( ((type *)0)->member ))
#define litLen(literal) (sizeof(literal) - 1)
// return true for byte match between string and string literal. string IS allowed to be longer than literal
#define byteMatchStart(s1, literal) (memcmp(s1, literal, litLen(literal)) == 0)
// return true for byte match between string and string literal. string IS NOT allowed to be longer than literal
#define byteMatchStrict(s1, literal) (memcmp(s1, literal, sizeof(literal)) == 0)
int tryJoinThread(pthread_t *thread, int64_t timeout);
typedef struct {
pthread_t pthread;
pthread_mutex_t mutex;
pthread_cond_t cond;
char *name;
int8_t joined;
int8_t joinFailed;
} threadT;
void threadDestroyAll();
void threadInit(threadT *thread, char *name);
void threadCreate(threadT *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg);
void threadTimedWait(threadT *thread, struct timespec *ts, int64_t increment);
void threadSignalJoin(threadT *thread);
int threadAffinity(int core_id);
struct char_buffer {
char *buffer;
size_t len;
size_t alloc;
};
struct char_buffer readWholeFile(int fd, char *errorContext);
struct char_buffer readWholeGz(gzFile gzfp, char *errorContext);
int writeGz(gzFile gzfp, void *source, int toWrite, char *errorContext);
static inline void msleep(int64_t ms) {
struct timespec slp = {ms / 1000, (ms % 1000) * 1000 * 1000};
nanosleep(&slp, NULL);
}
/* Returns system time in milliseconds */
int64_t mstime (void);
// microseconds
int64_t microtime(void);
void milli_micro_seconds(int64_t *milli, int64_t *micro);
int64_t mono_micro_seconds();
int64_t mono_milli_seconds();
int64_t getUptime();
int snprintHMS(char *buf, size_t bufsize, int64_t now);
int64_t msThreadTime(void);
int64_t nsThreadTime(void);
/* Returns the time elapsed, in nanoseconds, from t1 to t2,
* where t1 and t2 are 12MHz counters.
*/
int64_t receiveclock_ns_elapsed (int64_t t1, int64_t t2);
/* Same, in milliseconds */
int64_t receiveclock_ms_elapsed (int64_t t1, int64_t t2);
/* Normalize the value in ts so that ts->nsec lies in
* [0,999999999]
*/
static inline void normalize_timespec(struct timespec *ts) {
if (ts->tv_nsec >= 1000000000) {
ts->tv_sec += ts->tv_nsec / 1000000000;
ts->tv_nsec = ts->tv_nsec % 1000000000;
} else if (ts->tv_nsec < 0) {
long adjust = ts->tv_nsec / 1000000000 + 1;
ts->tv_sec -= adjust;
ts->tv_nsec = (ts->tv_nsec + 1000000000 * adjust) % 1000000000;
}
}
// convert ms to timespec
static inline struct timespec msToTimespec(int64_t ms) {
struct timespec ts;
ts.tv_sec = (ms / 1000);
ts.tv_nsec = (ms % 1000) * 1000 * 1000;
return ts;
}
/* record current CPU time in start_time */
void start_cpu_timing (struct timespec *start_time);
/* add difference between start_time and the current CPU time to add_to */
void end_cpu_timing (const struct timespec *start_time, struct timespec *add_to);
// given a start and end time, add the difference to the third timespec
void timespec_add_elapsed(const struct timespec *start_time, const struct timespec *end_time, struct timespec *add_to);
void start_monotonic_timing(struct timespec *start_time);
void end_monotonic_timing (const struct timespec *start_time, struct timespec *add_to);
// start watch for stopWatch
void startWatch(struct timespec *start_time);
// return elapsed time
int64_t stopWatch(struct timespec *start_time);
// return elapsed time and set start_time to current time
int64_t lapWatch(struct timespec *start_time);
// get nanoseconds and some other stuff for use with srand
unsigned int get_seed();
void log_with_timestamp(const char *format, ...) __attribute__ ((format(printf, 1, 2)));
// based on a give epoch time in ms, calculate the nearest offset interval step
// offset must be smaller than interval, at offset seconds after the full minute
// is the first possible value, all additional return values differ by a multiple
// of interval
int64_t roundSeconds(int interval, int offset, int64_t epoch_ms);
ssize_t check_write(int fd, const void *buf, size_t count, const char *error_context);
int my_epoll_create(int *event_fd_ptr);
void epollAllocEvents(struct epoll_event **events, int *maxEvents);
char *sprint_uuid(uint64_t id1, uint64_t id2, char *p);
char *sprint_uuid1_partial(uint64_t id1, char *p);
char *sprint_uuid1(uint64_t id1, char *p);
char *sprint_uuid2(uint64_t id2, char *p);
int mkdir_error(const char *path, mode_t mode, FILE *err_stream);
static inline double toRad(double degrees) {
return degrees * (M_PI / 180.0);
}
static inline double toDeg(double radians) {
return radians * (180.0 / M_PI);
}
static inline float toRadf(float degrees) {
return degrees * (float) (M_PI / 180.0f);
}
static inline float toDegf(float radians) {
return radians * (float) (180.0f / M_PI);
}
double greatcircle(double lat0, double lon0, double lat1, double lon1, int approx);
double bearing(double lat0, double lon0, double lat1, double lon1);
static inline int64_t imin(int64_t a, int64_t b) {
if (a < b)
return a;
else
return b;
}
static inline int64_t imax(int64_t a, int64_t b) {
if (a > b)
return a;
else
return b;
}
static inline double
norm_diff (double a, double pi)
{
if (a < -pi)
a += 2 * pi;
if (a > pi)
a -= 2 * pi;
return a;
}
static inline double
norm_angle (double a, double pi)
{
if (a < 0)
a += 2 * pi;
if (a >= 2 * pi)
a -= 2 * pi;
return a;
}
static inline void fprintTimePrecise(FILE *stream, int64_t now) {
fprintf(stream, "%02d:%02d:%06.3f",
(int) ((now / (3600 * SECONDS)) % 24),
(int) ((now / (60 * SECONDS)) % 60),
(now % (60 * SECONDS)) / 1000.0);
}
static inline void fprintTime(FILE *stream, int64_t now) {
fprintf(stream, "%02d:%02d:%04.1f",
(int) ((now / (3600 * SECONDS)) % 24),
(int) ((now / (60 * SECONDS)) % 60),
(now % (60 * SECONDS)) / 1000.0);
}
typedef struct {
void *buf;
ssize_t bufSize;
} buffer_t;
typedef struct {
int64_t now;
int32_t from;
int32_t to;
} readsb_task_t;
typedef struct {
uint32_t task_count;
readsb_task_t *infos;
threadpool_task_t *tasks;
} task_group_t;
// allocate a group of tasks
task_group_t *allocate_task_group(uint32_t count);
// destroy a group of tasks
void destroy_task_group(task_group_t *group);
void threadpool_distribute_and_run(threadpool_t *pool, task_group_t *task_group, threadpool_function_t func, int totalRange, int taskCount, int64_t now);
void check_grow_buffer_t(buffer_t *buffer, ssize_t newSize);
void *check_grow_threadpool_buffer_t(threadpool_buffer_t *buffer, ssize_t newSize);
void gzipFile(char *file);
struct char_buffer generateZstd(ZSTD_CCtx* cctx, threadpool_buffer_t *pbuffer, struct char_buffer src, int level);
struct char_buffer ident(struct char_buffer target);
void setLowestPriorityPthread();
void setPriorityPthread();
typedef struct {
//ZSTD_CCtx *cctx;
ZSTD_CStream *cstream;
ZSTD_inBuffer in;
size_t inAlloc;
ZSTD_outBuffer out;
const char *outFile;
int fd;
} zstd_fw_t;
zstd_fw_t *createZstdFw(size_t inBufSize);
void destroyZstdFw(zstd_fw_t *fw);
void zstdFwStartFile(zstd_fw_t *fw, const char *outFile, int compressionLvl);
void zstdFwFinishFile(zstd_fw_t *fw);
void zstdFwPutData(zstd_fw_t *fw, const uint8_t *data, size_t len);
void dump_beast_check(int64_t now);
int32_t tokenize(char **restrict stringp, char *restrict delim, char **restrict tokens, int maxTokens);
void spinLock(volatile atomic_int *lock);
void spinRelease(volatile atomic_int *lock);
#endif
|