File: RecastArea.cpp

package info (click to toggle)
recastnavigation 1.6.0%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,928 kB
  • sloc: cpp: 50,116; ansic: 2,674; xml: 182; makefile: 16
file content (717 lines) | stat: -rw-r--r-- 24,692 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty.  In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
//    claim that you wrote the original software. If you use this software
//    in a product, an acknowledgment in the product documentation would be
//    appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
//    misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"

#include <string.h> // for memcpy and memset

/// Sorts the given data in-place using insertion sort.
///
/// @param	data		The data to sort
/// @param	dataLength	The number of elements in @p data
static void insertSort(unsigned char* data, const int dataLength)
{
	for (int valueIndex = 1; valueIndex < dataLength; valueIndex++)
	{
		const unsigned char value = data[valueIndex];
		int insertionIndex;
		for (insertionIndex = valueIndex - 1; insertionIndex >= 0 && data[insertionIndex] > value; insertionIndex--)
		{
			// Shift over values
			data[insertionIndex + 1] = data[insertionIndex];
		}
		
		// Insert the value in sorted order.
		data[insertionIndex + 1] = value;
	}
}

// TODO (graham): This is duplicated in the ConvexVolumeTool in RecastDemo
/// Checks if a point is contained within a polygon
///
/// @param[in]	numVerts	Number of vertices in the polygon
/// @param[in]	verts		The polygon vertices
/// @param[in]	point		The point to check
/// @returns true if the point lies within the polygon, false otherwise.
static bool pointInPoly(int numVerts, const float* verts, const float* point)
{
	bool inPoly = false;
	for (int i = 0, j = numVerts - 1; i < numVerts; j = i++)
	{
		const float* vi = &verts[i * 3];
		const float* vj = &verts[j * 3];

		if ((vi[2] > point[2]) == (vj[2] > point[2]))
		{
			continue;
		}

		if (point[0] >= (vj[0] - vi[0]) * (point[2] - vi[2]) / (vj[2] - vi[2]) + vi[0])
		{
			continue;
		}
		inPoly = !inPoly;
	}
	return inPoly;
}

bool rcErodeWalkableArea(rcContext* context, const int erosionRadius, rcCompactHeightfield& compactHeightfield)
{
	rcAssert(context != NULL);

	const int xSize = compactHeightfield.width;
	const int zSize = compactHeightfield.height;
	const int& zStride = xSize; // For readability

	rcScopedTimer timer(context, RC_TIMER_ERODE_AREA);

	unsigned char* distanceToBoundary = (unsigned char*)rcAlloc(sizeof(unsigned char) * compactHeightfield.spanCount,
	                                                            RC_ALLOC_TEMP);
	if (!distanceToBoundary)
	{
		context->log(RC_LOG_ERROR, "erodeWalkableArea: Out of memory 'dist' (%d).", compactHeightfield.spanCount);
		return false;
	}
	memset(distanceToBoundary, 0xff, sizeof(unsigned char) * compactHeightfield.spanCount);
	
	// Mark boundary cells.
	for (int z = 0; z < zSize; ++z)
	{
		for (int x = 0; x < xSize; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			for (int spanIndex = (int)cell.index, maxSpanIndex = (int)(cell.index + cell.count); spanIndex < maxSpanIndex; ++spanIndex)
			{
				if (compactHeightfield.areas[spanIndex] == RC_NULL_AREA)
				{
					distanceToBoundary[spanIndex] = 0;
					continue;
				}
				const rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				// Check that there is a non-null adjacent span in each of the 4 cardinal directions.
				int neighborCount = 0;
				for (int direction = 0; direction < 4; ++direction)
				{
					const int neighborConnection = rcGetCon(span, direction);
					if (neighborConnection == RC_NOT_CONNECTED)
					{
						break;
					}
					
					const int neighborX = x + rcGetDirOffsetX(direction);
					const int neighborZ = z + rcGetDirOffsetY(direction);
					const int neighborSpanIndex = (int)compactHeightfield.cells[neighborX + neighborZ * zStride].index + neighborConnection;
					
					if (compactHeightfield.areas[neighborSpanIndex] == RC_NULL_AREA)
					{
						break;
					}
					neighborCount++;
				}
				
				// At least one missing neighbour, so this is a boundary cell.
				if (neighborCount != 4)
				{
					distanceToBoundary[spanIndex] = 0;
				}
			}
		}
	}
	
	unsigned char newDistance;
	
	// Pass 1
	for (int z = 0; z < zSize; ++z)
	{
		for (int x = 0; x < xSize; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				const rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				if (rcGetCon(span, 0) != RC_NOT_CONNECTED)
				{
					// (-1,0)
					const int aX = x + rcGetDirOffsetX(0);
					const int aY = z + rcGetDirOffsetY(0);
					const int aIndex = (int)compactHeightfield.cells[aX + aY * xSize].index + rcGetCon(span, 0);
					const rcCompactSpan& aSpan = compactHeightfield.spans[aIndex];
					newDistance = (unsigned char)rcMin((int)distanceToBoundary[aIndex] + 2, 255);
					if (newDistance < distanceToBoundary[spanIndex])
					{
						distanceToBoundary[spanIndex] = newDistance;
					}

					// (-1,-1)
					if (rcGetCon(aSpan, 3) != RC_NOT_CONNECTED)
					{
						const int bX = aX + rcGetDirOffsetX(3);
						const int bY = aY + rcGetDirOffsetY(3);
						const int bIndex = (int)compactHeightfield.cells[bX + bY * xSize].index + rcGetCon(aSpan, 3);
						newDistance = (unsigned char)rcMin((int)distanceToBoundary[bIndex] + 3, 255);
						if (newDistance < distanceToBoundary[spanIndex])
						{
							distanceToBoundary[spanIndex] = newDistance;
						}
					}
				}
				if (rcGetCon(span, 3) != RC_NOT_CONNECTED)
				{
					// (0,-1)
					const int aX = x + rcGetDirOffsetX(3);
					const int aY = z + rcGetDirOffsetY(3);
					const int aIndex = (int)compactHeightfield.cells[aX + aY * xSize].index + rcGetCon(span, 3);
					const rcCompactSpan& aSpan = compactHeightfield.spans[aIndex];
					newDistance = (unsigned char)rcMin((int)distanceToBoundary[aIndex] + 2, 255);
					if (newDistance < distanceToBoundary[spanIndex])
					{
						distanceToBoundary[spanIndex] = newDistance;
					}

					// (1,-1)
					if (rcGetCon(aSpan, 2) != RC_NOT_CONNECTED)
					{
						const int bX = aX + rcGetDirOffsetX(2);
						const int bY = aY + rcGetDirOffsetY(2);
						const int bIndex = (int)compactHeightfield.cells[bX + bY * xSize].index + rcGetCon(aSpan, 2);
						newDistance = (unsigned char)rcMin((int)distanceToBoundary[bIndex] + 3, 255);
						if (newDistance < distanceToBoundary[spanIndex])
						{
							distanceToBoundary[spanIndex] = newDistance;
						}
					}
				}
			}
		}
	}

	// Pass 2
	for (int z = zSize - 1; z >= 0; --z)
	{
		for (int x = xSize - 1; x >= 0; --x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				const rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				if (rcGetCon(span, 2) != RC_NOT_CONNECTED)
				{
					// (1,0)
					const int aX = x + rcGetDirOffsetX(2);
					const int aY = z + rcGetDirOffsetY(2);
					const int aIndex = (int)compactHeightfield.cells[aX + aY * xSize].index + rcGetCon(span, 2);
					const rcCompactSpan& aSpan = compactHeightfield.spans[aIndex];
					newDistance = (unsigned char)rcMin((int)distanceToBoundary[aIndex] + 2, 255);
					if (newDistance < distanceToBoundary[spanIndex])
					{
						distanceToBoundary[spanIndex] = newDistance;
					}

					// (1,1)
					if (rcGetCon(aSpan, 1) != RC_NOT_CONNECTED)
					{
						const int bX = aX + rcGetDirOffsetX(1);
						const int bY = aY + rcGetDirOffsetY(1);
						const int bIndex = (int)compactHeightfield.cells[bX + bY * xSize].index + rcGetCon(aSpan, 1);
						newDistance = (unsigned char)rcMin((int)distanceToBoundary[bIndex] + 3, 255);
						if (newDistance < distanceToBoundary[spanIndex])
						{
							distanceToBoundary[spanIndex] = newDistance;
						}
					}
				}
				if (rcGetCon(span, 1) != RC_NOT_CONNECTED)
				{
					// (0,1)
					const int aX = x + rcGetDirOffsetX(1);
					const int aY = z + rcGetDirOffsetY(1);
					const int aIndex = (int)compactHeightfield.cells[aX + aY * xSize].index + rcGetCon(span, 1);
					const rcCompactSpan& aSpan = compactHeightfield.spans[aIndex];
					newDistance = (unsigned char)rcMin((int)distanceToBoundary[aIndex] + 2, 255);
					if (newDistance < distanceToBoundary[spanIndex])
					{
						distanceToBoundary[spanIndex] = newDistance;
					}

					// (-1,1)
					if (rcGetCon(aSpan, 0) != RC_NOT_CONNECTED)
					{
						const int bX = aX + rcGetDirOffsetX(0);
						const int bY = aY + rcGetDirOffsetY(0);
						const int bIndex = (int)compactHeightfield.cells[bX + bY * xSize].index + rcGetCon(aSpan, 0);
						newDistance = (unsigned char)rcMin((int)distanceToBoundary[bIndex] + 3, 255);
						if (newDistance < distanceToBoundary[spanIndex])
						{
							distanceToBoundary[spanIndex] = newDistance;
						}
					}
				}
			}
		}
	}

	const unsigned char minBoundaryDistance = (unsigned char)(erosionRadius * 2);
	for (int spanIndex = 0; spanIndex < compactHeightfield.spanCount; ++spanIndex)
	{
		if (distanceToBoundary[spanIndex] < minBoundaryDistance)
		{
			compactHeightfield.areas[spanIndex] = RC_NULL_AREA;
		}
	}

	rcFree(distanceToBoundary);
	
	return true;
}

bool rcMedianFilterWalkableArea(rcContext* context, rcCompactHeightfield& compactHeightfield)
{
	rcAssert(context);
	
	const int xSize = compactHeightfield.width;
	const int zSize = compactHeightfield.height;
	const int zStride = xSize; // For readability

	rcScopedTimer timer(context, RC_TIMER_MEDIAN_AREA);

	unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char) * compactHeightfield.spanCount, RC_ALLOC_TEMP);
	if (!areas)
	{
		context->log(RC_LOG_ERROR, "medianFilterWalkableArea: Out of memory 'areas' (%d).",
		             compactHeightfield.spanCount);
		return false;
	}
	memset(areas, 0xff, sizeof(unsigned char) * compactHeightfield.spanCount);

	for (int z = 0; z < zSize; ++z)
	{
		for (int x = 0; x < xSize; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				const rcCompactSpan& span = compactHeightfield.spans[spanIndex];
				if (compactHeightfield.areas[spanIndex] == RC_NULL_AREA)
				{
					areas[spanIndex] = compactHeightfield.areas[spanIndex];
					continue;
				}

				unsigned char neighborAreas[9];
				for (int neighborIndex = 0; neighborIndex < 9; ++neighborIndex)
				{
					neighborAreas[neighborIndex] = compactHeightfield.areas[spanIndex];
				}

				for (int dir = 0; dir < 4; ++dir)
				{
					if (rcGetCon(span, dir) == RC_NOT_CONNECTED)
					{
						continue;
					}
					
					const int aX = x + rcGetDirOffsetX(dir);
					const int aZ = z + rcGetDirOffsetY(dir);
					const int aIndex = (int)compactHeightfield.cells[aX + aZ * zStride].index + rcGetCon(span, dir);
					if (compactHeightfield.areas[aIndex] != RC_NULL_AREA)
					{
						neighborAreas[dir * 2 + 0] = compactHeightfield.areas[aIndex];
					}

					const rcCompactSpan& aSpan = compactHeightfield.spans[aIndex];
					const int dir2 = (dir + 1) & 0x3;
					const int neighborConnection2 = rcGetCon(aSpan, dir2);
					if (neighborConnection2 != RC_NOT_CONNECTED)
					{
						const int bX = aX + rcGetDirOffsetX(dir2);
						const int bZ = aZ + rcGetDirOffsetY(dir2);
						const int bIndex = (int)compactHeightfield.cells[bX + bZ * zStride].index + neighborConnection2;
						if (compactHeightfield.areas[bIndex] != RC_NULL_AREA)
						{
							neighborAreas[dir * 2 + 1] = compactHeightfield.areas[bIndex];
						}
					}
				}
				insertSort(neighborAreas, 9);
				areas[spanIndex] = neighborAreas[4];
			}
		}
	}

	memcpy(compactHeightfield.areas, areas, sizeof(unsigned char) * compactHeightfield.spanCount);

	rcFree(areas);

	return true;
}

void rcMarkBoxArea(rcContext* context, const float* boxMinBounds, const float* boxMaxBounds, unsigned char areaId,
                   rcCompactHeightfield& compactHeightfield)
{
	rcAssert(context);

	rcScopedTimer timer(context, RC_TIMER_MARK_BOX_AREA);

	const int xSize = compactHeightfield.width;
	const int zSize = compactHeightfield.height;
	const int zStride = xSize; // For readability

	// Find the footprint of the box area in grid cell coordinates. 
	int minX = (int)((boxMinBounds[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int minY = (int)((boxMinBounds[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int minZ = (int)((boxMinBounds[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);
	int maxX = (int)((boxMaxBounds[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int maxY = (int)((boxMaxBounds[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int maxZ = (int)((boxMaxBounds[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);

	// Early-out if the box is outside the bounds of the grid.
	if (maxX < 0) { return; }
	if (minX >= xSize) { return; }
	if (maxZ < 0) { return; }
	if (minZ >= zSize) { return; }

	// Clamp relevant bound coordinates to the grid.
	if (minX < 0) { minX = 0; }
	if (maxX >= xSize) { maxX = xSize - 1; }
	if (minZ < 0) { minZ = 0; }
	if (maxZ >= zSize) { maxZ = zSize - 1; }

	// Mark relevant cells.
	for (int z = minZ; z <= maxZ; ++z)
	{
		for (int x = minX; x <= maxX; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				// Skip if the span is outside the box extents.
				if ((int)span.y < minY || (int)span.y > maxY)
				{
					continue;
				}

				// Skip if the span has been removed.
				if (compactHeightfield.areas[spanIndex] == RC_NULL_AREA)
				{
					continue;
				}

				// Mark the span.
				compactHeightfield.areas[spanIndex] = areaId;
			}
		}
	}
}

void rcMarkConvexPolyArea(rcContext* context, const float* verts, const int numVerts,
						  const float minY, const float maxY, unsigned char areaId,
						  rcCompactHeightfield& compactHeightfield)
{
	rcAssert(context);

	rcScopedTimer timer(context, RC_TIMER_MARK_CONVEXPOLY_AREA);

	const int xSize = compactHeightfield.width;
	const int zSize = compactHeightfield.height;
	const int zStride = xSize; // For readability

	// Compute the bounding box of the polygon
	float bmin[3];
	float bmax[3];
	rcVcopy(bmin, verts);
	rcVcopy(bmax, verts);
	for (int i = 1; i < numVerts; ++i)
	{
		rcVmin(bmin, &verts[i * 3]);
		rcVmax(bmax, &verts[i * 3]);
	}
	bmin[1] = minY;
	bmax[1] = maxY;

	// Compute the grid footprint of the polygon 
	int minx = (int)((bmin[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int miny = (int)((bmin[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int minz = (int)((bmin[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);
	int maxx = (int)((bmax[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int maxy = (int)((bmax[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int maxz = (int)((bmax[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);

	// Early-out if the polygon lies entirely outside the grid.
	if (maxx < 0) { return; }
    if (minx >= xSize) { return; }
    if (maxz < 0) { return; }
    if (minz >= zSize) { return; }

	// Clamp the polygon footprint to the grid
    if (minx < 0) { minx = 0; }
    if (maxx >= xSize) { maxx = xSize - 1; }
    if (minz < 0) { minz = 0; }
    if (maxz >= zSize) { maxz = zSize - 1; }

	// TODO: Optimize.
	for (int z = minz; z <= maxz; ++z)
	{
		for (int x = minx; x <= maxx; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				// Skip if span is removed.
				if (compactHeightfield.areas[spanIndex] == RC_NULL_AREA)
				{
					continue;
				}

				// Skip if y extents don't overlap.
				if ((int)span.y < miny || (int)span.y > maxy)
				{
					continue;
				}

				const float point[] = {
					compactHeightfield.bmin[0] + ((float)x + 0.5f) * compactHeightfield.cs,
					0,
					compactHeightfield.bmin[2] + ((float)z + 0.5f) * compactHeightfield.cs
				};
				
				if (pointInPoly(numVerts, verts, point))
				{
					compactHeightfield.areas[spanIndex] = areaId;
				}
			}
		}
	}
}

static const float EPSILON = 1e-6f;

/// Normalizes the vector if the length is greater than zero.
/// If the magnitude is zero, the vector is unchanged.
/// @param[in,out]	v	The vector to normalize. [(x, y, z)]
static void rcVsafeNormalize(float* v)
{
	const float sqMag = rcSqr(v[0]) + rcSqr(v[1]) + rcSqr(v[2]);
	if (sqMag > EPSILON)
	{
		const float inverseMag = 1.0f / rcSqrt(sqMag);
		v[0] *= inverseMag;
		v[1] *= inverseMag;
		v[2] *= inverseMag;
	}
}

int rcOffsetPoly(const float* verts, const int numVerts, const float offset, float* outVerts, const int maxOutVerts)
{
	// Defines the limit at which a miter becomes a bevel.
	// Similar in behavior to https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit
	const float MITER_LIMIT = 1.20f;

	int numOutVerts = 0;

	for (int vertIndex = 0; vertIndex < numVerts; vertIndex++)
	{
        // Grab three vertices of the polygon.
		const int vertIndexA = (vertIndex + numVerts - 1) % numVerts;
		const int vertIndexB = vertIndex;
		const int vertIndexC = (vertIndex + 1) % numVerts;
		const float* vertA = &verts[vertIndexA * 3];
		const float* vertB = &verts[vertIndexB * 3];
		const float* vertC = &verts[vertIndexC * 3];

        // From A to B on the x/z plane
		float prevSegmentDir[3];
		rcVsub(prevSegmentDir, vertB, vertA);
		prevSegmentDir[1] = 0; // Squash onto x/z plane
		rcVsafeNormalize(prevSegmentDir);
		
        // From B to C on the x/z plane
		float currSegmentDir[3];
		rcVsub(currSegmentDir, vertC, vertB);
		currSegmentDir[1] = 0; // Squash onto x/z plane
		rcVsafeNormalize(currSegmentDir);

        // The y component of the cross product of the two normalized segment directions.
        // The X and Z components of the cross product are both zero because the two
        // segment direction vectors fall within the x/z plane.
        float cross = currSegmentDir[0] * prevSegmentDir[2] - prevSegmentDir[0] * currSegmentDir[2];

        // CCW perpendicular vector to AB.  The segment normal.
		const float prevSegmentNormX = -prevSegmentDir[2];
		const float prevSegmentNormZ = prevSegmentDir[0];

        // CCW perpendicular vector to BC.  The segment normal.
		const float currSegmentNormX = -currSegmentDir[2];
		const float currSegmentNormZ = currSegmentDir[0];

        // Average the two segment normals to get the proportional miter offset for B.
        // This isn't normalized because it's defining the distance and direction the corner will need to be
        // adjusted proportionally to the edge offsets to properly miter the adjoining edges.
		float cornerMiterX = (prevSegmentNormX + currSegmentNormX) * 0.5f;
		float cornerMiterZ = (prevSegmentNormZ + currSegmentNormZ) * 0.5f;
        const float cornerMiterSqMag = rcSqr(cornerMiterX) + rcSqr(cornerMiterZ);

        // If the magnitude of the segment normal average is less than about .69444,
        // the corner is an acute enough angle that the result should be beveled.
        const bool bevel = cornerMiterSqMag * MITER_LIMIT * MITER_LIMIT < 1.0f;

        // Scale the corner miter so it's proportional to how much the corner should be offset compared to the edges.
		if (cornerMiterSqMag > EPSILON)
		{
			const float scale = 1.0f / cornerMiterSqMag;
            cornerMiterX *= scale;
            cornerMiterZ *= scale;
		}

		if (bevel && cross < 0.0f) // If the corner is convex and an acute enough angle, generate a bevel.
		{
			if (numOutVerts + 2 > maxOutVerts)
			{
				return 0;
			}

            // Generate two bevel vertices at a distances from B proportional to the angle between the two segments.
            // Move each bevel vertex out proportional to the given offset.
			float d = (1.0f - (prevSegmentDir[0] * currSegmentDir[0] + prevSegmentDir[2] * currSegmentDir[2])) * 0.5f;

			outVerts[numOutVerts * 3 + 0] = vertB[0] + (-prevSegmentNormX + prevSegmentDir[0] * d) * offset;
			outVerts[numOutVerts * 3 + 1] = vertB[1];
			outVerts[numOutVerts * 3 + 2] = vertB[2] + (-prevSegmentNormZ + prevSegmentDir[2] * d) * offset;
			numOutVerts++;

			outVerts[numOutVerts * 3 + 0] = vertB[0] + (-currSegmentNormX - currSegmentDir[0] * d) * offset;
			outVerts[numOutVerts * 3 + 1] = vertB[1];
			outVerts[numOutVerts * 3 + 2] = vertB[2] + (-currSegmentNormZ - currSegmentDir[2] * d) * offset;
			numOutVerts++;
		}
		else
		{
			if (numOutVerts + 1 > maxOutVerts)
			{
				return 0;
			}

            // Move B along the miter direction by the specified offset.
			outVerts[numOutVerts * 3 + 0] = vertB[0] - cornerMiterX * offset;
			outVerts[numOutVerts * 3 + 1] = vertB[1];
			outVerts[numOutVerts * 3 + 2] = vertB[2] - cornerMiterZ * offset;
			numOutVerts++;
		}
	}

	return numOutVerts;
}

void rcMarkCylinderArea(rcContext* context, const float* position, const float radius, const float height,
                        unsigned char areaId, rcCompactHeightfield& compactHeightfield)
{
	rcAssert(context);

	rcScopedTimer timer(context, RC_TIMER_MARK_CYLINDER_AREA);

	const int xSize = compactHeightfield.width;
	const int zSize = compactHeightfield.height;
	const int zStride = xSize; // For readability

	// Compute the bounding box of the cylinder
	const float cylinderBBMin[] =
	{
		position[0] - radius,
		position[1],
		position[2] - radius
	};
	const float cylinderBBMax[] =
	{
		position[0] + radius,
		position[1] + height,
		position[2] + radius
	};

	// Compute the grid footprint of the cylinder
	int minx = (int)((cylinderBBMin[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int miny = (int)((cylinderBBMin[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int minz = (int)((cylinderBBMin[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);
	int maxx = (int)((cylinderBBMax[0] - compactHeightfield.bmin[0]) / compactHeightfield.cs);
	int maxy = (int)((cylinderBBMax[1] - compactHeightfield.bmin[1]) / compactHeightfield.ch);
	int maxz = (int)((cylinderBBMax[2] - compactHeightfield.bmin[2]) / compactHeightfield.cs);

	// Early-out if the cylinder is completely outside the grid bounds.
    if (maxx < 0) { return; }
    if (minx >= xSize) { return; }
    if (maxz < 0) { return; }
    if (minz >= zSize) { return; }

	// Clamp the cylinder bounds to the grid.
    if (minx < 0) { minx = 0; }
    if (maxx >= xSize) { maxx = xSize - 1; }
    if (minz < 0) { minz = 0; }
    if (maxz >= zSize) { maxz = zSize - 1; }

	const float radiusSq = radius * radius;

	for (int z = minz; z <= maxz; ++z)
	{
		for (int x = minx; x <= maxx; ++x)
		{
			const rcCompactCell& cell = compactHeightfield.cells[x + z * zStride];
			const int maxSpanIndex = (int)(cell.index + cell.count);

			const float cellX = compactHeightfield.bmin[0] + ((float)x + 0.5f) * compactHeightfield.cs;
			const float cellZ = compactHeightfield.bmin[2] + ((float)z + 0.5f) * compactHeightfield.cs;
			const float deltaX = cellX - position[0];
            const float deltaZ = cellZ - position[2];

			// Skip this column if it's too far from the center point of the cylinder.
            if (rcSqr(deltaX) + rcSqr(deltaZ) >= radiusSq)
            {
	            continue;
            }

			// Mark all overlapping spans
			for (int spanIndex = (int)cell.index; spanIndex < maxSpanIndex; ++spanIndex)
			{
				rcCompactSpan& span = compactHeightfield.spans[spanIndex];

				// Skip if span is removed.
				if (compactHeightfield.areas[spanIndex] == RC_NULL_AREA)
				{
					continue;
				}

				// Mark if y extents overlap.
				if ((int)span.y >= miny && (int)span.y <= maxy)
				{
					compactHeightfield.areas[spanIndex] = areaId;
				}
			}
		}
	}
}