1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#include <stdio.h>
#include <string.h>
#include "catch2/catch_all.hpp"
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
#include <vector>
// TODO: Implement benchmarking for platforms other than posix.
#ifdef __unix__
#include <unistd.h>
#ifdef _POSIX_TIMERS
#include <time.h>
#include <stdint.h>
int64_t NowNanos() {
struct timespec tp;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &tp);
return tp.tv_nsec + 1000000000LL * tp.tv_sec;
}
#define BM(name, iterations) \
struct BM_ ## name { \
static void Run() { \
int64_t begin_time = NowNanos(); \
for (int i = 0 ; i < iterations; i++) { \
Body(); \
} \
int64_t nanos = NowNanos() - begin_time; \
printf("BM_%-35s %ld iterations in %10ld nanos: %10.2f nanos/it\n", #name ":", (int64_t)iterations, nanos, double(nanos) / iterations); \
} \
static void Body(); \
}; \
TEST_CASE(#name) { \
BM_ ## name::Run(); \
} \
void BM_ ## name::Body()
const int64_t kNumLoops = 100;
const int64_t kNumInserts = 100000;
// Prevent compiler from eliding a calculation.
// TODO: Implement for MSVC.
template <typename T>
void DoNotOptimize(T* v) {
asm volatile ("" : "+r" (v));
}
BM(FlatArray_Push, kNumLoops)
{
int cap = 64;
int* v = (int*)rcAlloc(cap * sizeof(int), RC_ALLOC_TEMP);
for (int j = 0; j < kNumInserts; j++) {
if (j == cap) {
cap *= 2;
int* tmp = (int*)rcAlloc(sizeof(int) * cap, RC_ALLOC_TEMP);
memcpy(tmp, v, j * sizeof(int));
rcFree(v);
v = tmp;
}
v[j] = 2;
}
DoNotOptimize(v);
rcFree(v);
}
BM(FlatArray_Fill, kNumLoops)
{
int* v = (int*)rcAlloc(sizeof(int) * kNumInserts, RC_ALLOC_TEMP);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v);
rcFree(v);
}
BM(FlatArray_Memset, kNumLoops)
{
int* v = (int*)rcAlloc(sizeof(int) * kNumInserts, RC_ALLOC_TEMP);
memset(v, 0, kNumInserts * sizeof(int));
DoNotOptimize(v);
rcFree(v);
}
BM(rcVector_Push, kNumLoops)
{
rcTempVector<int> v;
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(rcVector_PushPreallocated, kNumLoops)
{
rcTempVector<int> v;
v.reserve(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(rcVector_Assign, kNumLoops)
{
rcTempVector<int> v;
v.assign(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(rcVector_AssignIndices, kNumLoops)
{
rcTempVector<int> v;
v.resize(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v.data());
}
BM(rcVector_Resize, kNumLoops)
{
rcTempVector<int> v;
v.resize(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(stdvector_Push, kNumLoops)
{
std::vector<int> v;
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(stdvector_PushPreallocated, kNumLoops)
{
std::vector<int> v;
v.reserve(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v.push_back(2);
}
DoNotOptimize(v.data());
}
BM(stdvector_Assign, kNumLoops)
{
std::vector<int> v;
v.assign(kNumInserts, 2);
DoNotOptimize(v.data());
}
BM(stdvector_AssignIndices, kNumLoops)
{
std::vector<int> v;
v.resize(kNumInserts);
for (int j = 0; j < kNumInserts; j++) {
v[j] = 2;
}
DoNotOptimize(v.data());
}
BM(stdvector_Resize, kNumLoops)
{
std::vector<int> v;
v.resize(kNumInserts, 2);
DoNotOptimize(v.data());
}
#undef BM
#endif // _POSIX_TIMERS
#endif // __unix__
|