1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898
|
// Copyright (c) 2017-2019, Salvatore Sanfilippo <antirez at gmail dot com>
// SPDX-FileCopyrightText: 2024 Redict Contributors
// SPDX-FileCopyrightText: 2024 Salvatore Sanfilippo <antirez at gmail dot com>
//
// SPDX-License-Identifier: BSD-3-Clause
// SPDX-License-Identifier: LGPL-3.0-only
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include <math.h>
#include "rax.h"
#include "redictassert.h"
#ifndef RAX_MALLOC_INCLUDE
#define RAX_MALLOC_INCLUDE "rax_malloc.h"
#endif
#include RAX_MALLOC_INCLUDE
/* -------------------------------- Debugging ------------------------------ */
void raxDebugShowNode(const char *msg, raxNode *n);
/* Turn debugging messages on/off by compiling with RAX_DEBUG_MSG macro on.
* When RAX_DEBUG_MSG is defined by default Rax operations will emit a lot
* of debugging info to the standard output, however you can still turn
* debugging on/off in order to enable it only when you suspect there is an
* operation causing a bug using the function raxSetDebugMsg(). */
#ifdef RAX_DEBUG_MSG
#define debugf(...) \
if (raxDebugMsg) { \
printf("%s:%s:%d:\t", __FILE__, __func__, __LINE__); \
printf(__VA_ARGS__); \
fflush(stdout); \
}
#define debugnode(msg,n) raxDebugShowNode(msg,n)
#else
#define debugf(...)
#define debugnode(msg,n)
#endif
/* By default log debug info if RAX_DEBUG_MSG is defined. */
static int raxDebugMsg = 1;
/* When debug messages are enabled, turn them on/off dynamically. By
* default they are enabled. Set the state to 0 to disable, and 1 to
* re-enable. */
void raxSetDebugMsg(int onoff) {
raxDebugMsg = onoff;
}
/* ------------------------- raxStack functions --------------------------
* The raxStack is a simple stack of pointers that is capable of switching
* from using a stack-allocated array to dynamic heap once a given number of
* items are reached. It is used in order to retain the list of parent nodes
* while walking the radix tree in order to implement certain operations that
* need to navigate the tree upward.
* ------------------------------------------------------------------------- */
/* Initialize the stack. */
static inline void raxStackInit(raxStack *ts) {
ts->stack = ts->static_items;
ts->items = 0;
ts->maxitems = RAX_STACK_STATIC_ITEMS;
ts->oom = 0;
}
/* Push an item into the stack, returns 1 on success, 0 on out of memory. */
static inline int raxStackPush(raxStack *ts, void *ptr) {
if (ts->items == ts->maxitems) {
if (ts->stack == ts->static_items) {
ts->stack = rax_malloc(sizeof(void*)*ts->maxitems*2);
if (ts->stack == NULL) {
ts->stack = ts->static_items;
ts->oom = 1;
errno = ENOMEM;
return 0;
}
memcpy(ts->stack,ts->static_items,sizeof(void*)*ts->maxitems);
} else {
void **newalloc = rax_realloc(ts->stack,sizeof(void*)*ts->maxitems*2);
if (newalloc == NULL) {
ts->oom = 1;
errno = ENOMEM;
return 0;
}
ts->stack = newalloc;
}
ts->maxitems *= 2;
}
ts->stack[ts->items] = ptr;
ts->items++;
return 1;
}
/* Pop an item from the stack, the function returns NULL if there are no
* items to pop. */
static inline void *raxStackPop(raxStack *ts) {
if (ts->items == 0) return NULL;
ts->items--;
return ts->stack[ts->items];
}
/* Return the stack item at the top of the stack without actually consuming
* it. */
static inline void *raxStackPeek(raxStack *ts) {
if (ts->items == 0) return NULL;
return ts->stack[ts->items-1];
}
/* Free the stack in case we used heap allocation. */
static inline void raxStackFree(raxStack *ts) {
if (ts->stack != ts->static_items) rax_free(ts->stack);
}
/* ----------------------------------------------------------------------------
* Radix tree implementation
* --------------------------------------------------------------------------*/
/* Return the padding needed in the characters section of a node having size
* 'nodesize'. The padding is needed to store the child pointers to aligned
* addresses. Note that we add 4 to the node size because the node has a four
* bytes header. */
#define raxPadding(nodesize) ((sizeof(void*)-(((nodesize)+4) % sizeof(void*))) & (sizeof(void*)-1))
/* Return the pointer to the last child pointer in a node. For the compressed
* nodes this is the only child pointer. */
#define raxNodeLastChildPtr(n) ((raxNode**) ( \
((char*)(n)) + \
raxNodeCurrentLength(n) - \
sizeof(raxNode*) - \
(((n)->iskey && !(n)->isnull) ? sizeof(void*) : 0) \
))
/* Return the pointer to the first child pointer. */
#define raxNodeFirstChildPtr(n) ((raxNode**) ( \
(n)->data + \
(n)->size + \
raxPadding((n)->size)))
/* Return the current total size of the node. Note that the second line
* computes the padding after the string of characters, needed in order to
* save pointers to aligned addresses. */
#define raxNodeCurrentLength(n) ( \
sizeof(raxNode)+(n)->size+ \
raxPadding((n)->size)+ \
((n)->iscompr ? sizeof(raxNode*) : sizeof(raxNode*)*(n)->size)+ \
(((n)->iskey && !(n)->isnull)*sizeof(void*)) \
)
/* Allocate a new non compressed node with the specified number of children.
* If datafield is true, the allocation is made large enough to hold the
* associated data pointer.
* Returns the new node pointer. On out of memory NULL is returned. */
raxNode *raxNewNode(size_t children, int datafield) {
size_t nodesize = sizeof(raxNode)+children+raxPadding(children)+
sizeof(raxNode*)*children;
if (datafield) nodesize += sizeof(void*);
raxNode *node = rax_malloc(nodesize);
if (node == NULL) return NULL;
node->iskey = 0;
node->isnull = 0;
node->iscompr = 0;
node->size = children;
return node;
}
/* Allocate a new rax and return its pointer. On out of memory the function
* returns NULL. */
rax *raxNew(void) {
rax *rax = rax_malloc(sizeof(*rax));
if (rax == NULL) return NULL;
rax->numele = 0;
rax->numnodes = 1;
rax->head = raxNewNode(0,0);
if (rax->head == NULL) {
rax_free(rax);
return NULL;
} else {
return rax;
}
}
/* realloc the node to make room for auxiliary data in order
* to store an item in that node. On out of memory NULL is returned. */
raxNode *raxReallocForData(raxNode *n, void *data) {
if (data == NULL) return n; /* No reallocation needed, setting isnull=1 */
size_t curlen = raxNodeCurrentLength(n);
return rax_realloc(n,curlen+sizeof(void*));
}
/* Set the node auxiliary data to the specified pointer. */
void raxSetData(raxNode *n, void *data) {
n->iskey = 1;
if (data != NULL) {
n->isnull = 0;
void **ndata = (void**)
((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
memcpy(ndata,&data,sizeof(data));
} else {
n->isnull = 1;
}
}
/* Get the node auxiliary data. */
void *raxGetData(raxNode *n) {
if (n->isnull) return NULL;
void **ndata =(void**)((char*)n+raxNodeCurrentLength(n)-sizeof(void*));
void *data;
memcpy(&data,ndata,sizeof(data));
return data;
}
/* Add a new child to the node 'n' representing the character 'c' and return
* its new pointer, as well as the child pointer by reference. Additionally
* '***parentlink' is populated with the raxNode pointer-to-pointer of where
* the new child was stored, which is useful for the caller to replace the
* child pointer if it gets reallocated.
*
* On success the new parent node pointer is returned (it may change because
* of the realloc, so the caller should discard 'n' and use the new value).
* On out of memory NULL is returned, and the old node is still valid. */
raxNode *raxAddChild(raxNode *n, unsigned char c, raxNode **childptr, raxNode ***parentlink) {
assert(n->iscompr == 0);
size_t curlen = raxNodeCurrentLength(n);
n->size++;
size_t newlen = raxNodeCurrentLength(n);
n->size--; /* For now restore the original size. We'll update it only on
success at the end. */
/* Alloc the new child we will link to 'n'. */
raxNode *child = raxNewNode(0,0);
if (child == NULL) return NULL;
/* Make space in the original node. */
raxNode *newn = rax_realloc(n,newlen);
if (newn == NULL) {
rax_free(child);
return NULL;
}
n = newn;
/* After the reallocation, we have up to 8/16 (depending on the system
* pointer size, and the required node padding) bytes at the end, that is,
* the additional char in the 'data' section, plus one pointer to the new
* child, plus the padding needed in order to store addresses into aligned
* locations.
*
* So if we start with the following node, having "abde" edges.
*
* Note:
* - We assume 4 bytes pointer for simplicity.
* - Each space below corresponds to one byte
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|
*
* After the reallocation we need: 1 byte for the new edge character
* plus 4 bytes for a new child pointer (assuming 32 bit machine).
* However after adding 1 byte to the edge char, the header + the edge
* characters are no longer aligned, so we also need 3 bytes of padding.
* In total the reallocation will add 1+4+3 bytes = 8 bytes:
*
* (Blank bytes are represented by ".")
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr]|AUXP|[....][....]
*
* Let's find where to insert the new child in order to make sure
* it is inserted in-place lexicographically. Assuming we are adding
* a child "c" in our case pos will be = 2 after the end of the following
* loop. */
int pos;
for (pos = 0; pos < n->size; pos++) {
if (n->data[pos] > c) break;
}
/* Now, if present, move auxiliary data pointer at the end
* so that we can mess with the other data without overwriting it.
* We will obtain something like that:
*
* [HDR*][abde][Aptr][Bptr][Dptr][Eptr][....][....]|AUXP|
*/
unsigned char *src, *dst;
if (n->iskey && !n->isnull) {
src = ((unsigned char*)n+curlen-sizeof(void*));
dst = ((unsigned char*)n+newlen-sizeof(void*));
memmove(dst,src,sizeof(void*));
}
/* Compute the "shift", that is, how many bytes we need to move the
* pointers section forward because of the addition of the new child
* byte in the string section. Note that if we had no padding, that
* would be always "1", since we are adding a single byte in the string
* section of the node (where now there is "abde" basically).
*
* However we have padding, so it could be zero, or up to 8.
*
* Another way to think at the shift is, how many bytes we need to
* move child pointers forward *other than* the obvious sizeof(void*)
* needed for the additional pointer itself. */
size_t shift = newlen - curlen - sizeof(void*);
/* We said we are adding a node with edge 'c'. The insertion
* point is between 'b' and 'd', so the 'pos' variable value is
* the index of the first child pointer that we need to move forward
* to make space for our new pointer.
*
* To start, move all the child pointers after the insertion point
* of shift+sizeof(pointer) bytes on the right, to obtain:
*
* [HDR*][abde][Aptr][Bptr][....][....][Dptr][Eptr]|AUXP|
*/
src = n->data+n->size+
raxPadding(n->size)+
sizeof(raxNode*)*pos;
memmove(src+shift+sizeof(raxNode*),src,sizeof(raxNode*)*(n->size-pos));
/* Move the pointers to the left of the insertion position as well. Often
* we don't need to do anything if there was already some padding to use. In
* that case the final destination of the pointers will be the same, however
* in our example there was no pre-existing padding, so we added one byte
* plus three bytes of padding. After the next memmove() things will look
* like that:
*
* [HDR*][abde][....][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
*/
if (shift) {
src = (unsigned char*) raxNodeFirstChildPtr(n);
memmove(src+shift,src,sizeof(raxNode*)*pos);
}
/* Now make the space for the additional char in the data section,
* but also move the pointers before the insertion point to the right
* by shift bytes, in order to obtain the following:
*
* [HDR*][ab.d][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
*/
src = n->data+pos;
memmove(src+1,src,n->size-pos);
/* We can now set the character and its child node pointer to get:
*
* [HDR*][abcd][e...][Aptr][Bptr][....][Dptr][Eptr]|AUXP|
* [HDR*][abcd][e...][Aptr][Bptr][Cptr][Dptr][Eptr]|AUXP|
*/
n->data[pos] = c;
n->size++;
src = (unsigned char*) raxNodeFirstChildPtr(n);
raxNode **childfield = (raxNode**)(src+sizeof(raxNode*)*pos);
memcpy(childfield,&child,sizeof(child));
*childptr = child;
*parentlink = childfield;
return n;
}
/* Turn the node 'n', that must be a node without any children, into a
* compressed node representing a set of nodes linked one after the other
* and having exactly one child each. The node can be a key or not: this
* property and the associated value if any will be preserved.
*
* The function also returns a child node, since the last node of the
* compressed chain cannot be part of the chain: it has zero children while
* we can only compress inner nodes with exactly one child each. */
raxNode *raxCompressNode(raxNode *n, unsigned char *s, size_t len, raxNode **child) {
assert(n->size == 0 && n->iscompr == 0);
void *data = NULL; /* Initialized only to avoid warnings. */
size_t newsize;
debugf("Compress node: %.*s\n", (int)len,s);
/* Allocate the child to link to this node. */
*child = raxNewNode(0,0);
if (*child == NULL) return NULL;
/* Make space in the parent node. */
newsize = sizeof(raxNode)+len+raxPadding(len)+sizeof(raxNode*);
if (n->iskey) {
data = raxGetData(n); /* To restore it later. */
if (!n->isnull) newsize += sizeof(void*);
}
raxNode *newn = rax_realloc(n,newsize);
if (newn == NULL) {
rax_free(*child);
return NULL;
}
n = newn;
n->iscompr = 1;
n->size = len;
memcpy(n->data,s,len);
if (n->iskey) raxSetData(n,data);
raxNode **childfield = raxNodeLastChildPtr(n);
memcpy(childfield,child,sizeof(*child));
return n;
}
/* Low level function that walks the tree looking for the string
* 's' of 'len' bytes. The function returns the number of characters
* of the key that was possible to process: if the returned integer
* is the same as 'len', then it means that the node corresponding to the
* string was found (however it may not be a key in case the node->iskey is
* zero or if simply we stopped in the middle of a compressed node, so that
* 'splitpos' is non zero).
*
* Otherwise if the returned integer is not the same as 'len', there was an
* early stop during the tree walk because of a character mismatch.
*
* The node where the search ended (because the full string was processed
* or because there was an early stop) is returned by reference as
* '*stopnode' if the passed pointer is not NULL. This node link in the
* parent's node is returned as '*plink' if not NULL. Finally, if the
* search stopped in a compressed node, '*splitpos' returns the index
* inside the compressed node where the search ended. This is useful to
* know where to split the node for insertion.
*
* Note that when we stop in the middle of a compressed node with
* a perfect match, this function will return a length equal to the
* 'len' argument (all the key matched), and will return a *splitpos which is
* always positive (that will represent the index of the character immediately
* *after* the last match in the current compressed node).
*
* When instead we stop at a compressed node and *splitpos is zero, it
* means that the current node represents the key (that is, none of the
* compressed node characters are needed to represent the key, just all
* its parents nodes). */
static inline size_t raxLowWalk(rax *rax, unsigned char *s, size_t len, raxNode **stopnode, raxNode ***plink, int *splitpos, raxStack *ts) {
raxNode *h = rax->head;
raxNode **parentlink = &rax->head;
size_t i = 0; /* Position in the string. */
size_t j = 0; /* Position in the node children (or bytes if compressed).*/
while(h->size && i < len) {
debugnode("Lookup current node",h);
unsigned char *v = h->data;
if (h->iscompr) {
for (j = 0; j < h->size && i < len; j++, i++) {
if (v[j] != s[i]) break;
}
if (j != h->size) break;
} else {
/* Even when h->size is large, linear scan provides good
* performances compared to other approaches that are in theory
* more sounding, like performing a binary search. */
for (j = 0; j < h->size; j++) {
if (v[j] == s[i]) break;
}
if (j == h->size) break;
i++;
}
if (ts) raxStackPush(ts,h); /* Save stack of parent nodes. */
raxNode **children = raxNodeFirstChildPtr(h);
if (h->iscompr) j = 0; /* Compressed node only child is at index 0. */
memcpy(&h,children+j,sizeof(h));
parentlink = children+j;
j = 0; /* If the new node is non compressed and we do not
iterate again (since i == len) set the split
position to 0 to signal this node represents
the searched key. */
}
debugnode("Lookup stop node is",h);
if (stopnode) *stopnode = h;
if (plink) *plink = parentlink;
if (splitpos && h->iscompr) *splitpos = j;
return i;
}
/* Insert the element 's' of size 'len', setting as auxiliary data
* the pointer 'data'. If the element is already present, the associated
* data is updated (only if 'overwrite' is set to 1), and 0 is returned,
* otherwise the element is inserted and 1 is returned. On out of memory the
* function returns 0 as well but sets errno to ENOMEM, otherwise errno will
* be set to 0.
*/
int raxGenericInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old, int overwrite) {
size_t i;
int j = 0; /* Split position. If raxLowWalk() stops in a compressed
node, the index 'j' represents the char we stopped within the
compressed node, that is, the position where to split the
node for insertion. */
raxNode *h, **parentlink;
debugf("### Insert %.*s with value %p\n", (int)len, s, data);
i = raxLowWalk(rax,s,len,&h,&parentlink,&j,NULL);
/* If i == len we walked following the whole string. If we are not
* in the middle of a compressed node, the string is either already
* inserted or this middle node is currently not a key, but can represent
* our key. We have just to reallocate the node and make space for the
* data pointer. */
if (i == len && (!h->iscompr || j == 0 /* not in the middle if j is 0 */)) {
debugf("### Insert: node representing key exists\n");
/* Make space for the value pointer if needed. */
if (!h->iskey || (h->isnull && overwrite)) {
h = raxReallocForData(h,data);
if (h) memcpy(parentlink,&h,sizeof(h));
}
if (h == NULL) {
errno = ENOMEM;
return 0;
}
/* Update the existing key if there is already one. */
if (h->iskey) {
if (old) *old = raxGetData(h);
if (overwrite) raxSetData(h,data);
errno = 0;
return 0; /* Element already exists. */
}
/* Otherwise set the node as a key. Note that raxSetData()
* will set h->iskey. */
raxSetData(h,data);
rax->numele++;
return 1; /* Element inserted. */
}
/* If the node we stopped at is a compressed node, we need to
* split it before to continue.
*
* Splitting a compressed node have a few possible cases.
* Imagine that the node 'h' we are currently at is a compressed
* node containing the string "ANNIBALE" (it means that it represents
* nodes A -> N -> N -> I -> B -> A -> L -> E with the only child
* pointer of this node pointing at the 'E' node, because remember that
* we have characters at the edges of the graph, not inside the nodes
* themselves.
*
* In order to show a real case imagine our node to also point to
* another compressed node, that finally points at the node without
* children, representing 'O':
*
* "ANNIBALE" -> "SCO" -> []
*
* When inserting we may face the following cases. Note that all the cases
* require the insertion of a non compressed node with exactly two
* children, except for the last case which just requires splitting a
* compressed node.
*
* 1) Inserting "ANNIENTARE"
*
* |B| -> "ALE" -> "SCO" -> []
* "ANNI" -> |-|
* |E| -> (... continue algo ...) "NTARE" -> []
*
* 2) Inserting "ANNIBALI"
*
* |E| -> "SCO" -> []
* "ANNIBAL" -> |-|
* |I| -> (... continue algo ...) []
*
* 3) Inserting "AGO" (Like case 1, but set iscompr = 0 into original node)
*
* |N| -> "NIBALE" -> "SCO" -> []
* |A| -> |-|
* |G| -> (... continue algo ...) |O| -> []
*
* 4) Inserting "CIAO"
*
* |A| -> "NNIBALE" -> "SCO" -> []
* |-|
* |C| -> (... continue algo ...) "IAO" -> []
*
* 5) Inserting "ANNI"
*
* "ANNI" -> "BALE" -> "SCO" -> []
*
* The final algorithm for insertion covering all the above cases is as
* follows.
*
* ============================= ALGO 1 =============================
*
* For the above cases 1 to 4, that is, all cases where we stopped in
* the middle of a compressed node for a character mismatch, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we found the mismatching
* character. For example if the node contains "ANNIBALE" and we add
* "ANNIENTARE" the $SPLITPOS is 4, that is, the index at which the
* mismatching character is found.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create "split node" having as child the non common letter
* at the compressed node. The other non common letter (at the key)
* will be added later as we continue the normal insertion algorithm
* at step "6".
*
* 3a. IF $SPLITPOS == 0:
* Replace the old node with the split node, by copying the auxiliary
* data if any. Fix parent's reference. Free old node eventually
* (we still need its data for the next steps of the algorithm).
*
* 3b. IF $SPLITPOS != 0:
* Trim the compressed node (reallocating it as well) in order to
* contain $splitpos characters. Change child pointer in order to link
* to the split node. If new compressed node len is just 1, set
* iscompr to 0 (layout is the same). Fix parent's reference.
*
* 4a. IF the postfix len (the length of the remaining string of the
* original compressed node after the split character) is non zero,
* create a "postfix node". If the postfix node has just one character
* set iscompr to 0, otherwise iscompr to 1. Set the postfix node
* child pointer to $NEXT.
*
* 4b. IF the postfix len is zero, just use $NEXT as postfix pointer.
*
* 5. Set child[0] of split node to postfix node.
*
* 6. Set the split node as the current node, set current index at child[1]
* and continue insertion algorithm as usually.
*
* ============================= ALGO 2 =============================
*
* For case 5, that is, if we stopped in the middle of a compressed
* node but no mismatch was found, do:
*
* Let $SPLITPOS be the zero-based index at which, in the
* compressed node array of characters, we stopped iterating because
* there were no more keys character to match. So in the example of
* the node "ANNIBALE", adding the string "ANNI", the $SPLITPOS is 4.
*
* 1. Save the current compressed node $NEXT pointer (the pointer to the
* child element, that is always present in compressed nodes).
*
* 2. Create a "postfix node" containing all the characters from $SPLITPOS
* to the end. Use $NEXT as the postfix node child pointer.
* If the postfix node length is 1, set iscompr to 0.
* Set the node as a key with the associated value of the new
* inserted key.
*
* 3. Trim the current node to contain the first $SPLITPOS characters.
* As usually if the new node length is just 1, set iscompr to 0.
* Take the iskey / associated value as it was in the original node.
* Fix the parent's reference.
*
* 4. Set the postfix node as the only child pointer of the trimmed
* node created at step 1.
*/
/* ------------------------- ALGORITHM 1 --------------------------- */
if (h->iscompr && i != len) {
debugf("ALGO 1: Stopped at compressed node %.*s (%p)\n",
h->size, h->data, (void*)h);
debugf("Still to insert: %.*s\n", (int)(len-i), s+i);
debugf("Splitting at %d: '%c'\n", j, ((char*)h->data)[j]);
debugf("Other (key) letter is '%c'\n", s[i]);
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
debugf("Next is %p\n", (void*)next);
debugf("iskey %d\n", h->iskey);
if (h->iskey) {
debugf("key value is %p\n", raxGetData(h));
}
/* Set the length of the additional nodes we will need. */
size_t trimmedlen = j;
size_t postfixlen = h->size - j - 1;
int split_node_is_key = !trimmedlen && h->iskey && !h->isnull;
size_t nodesize;
/* 2: Create the split node. Also allocate the other nodes we'll need
* ASAP, so that it will be simpler to handle OOM. */
raxNode *splitnode = raxNewNode(1, split_node_is_key);
raxNode *trimmed = NULL;
raxNode *postfix = NULL;
if (trimmedlen) {
nodesize = sizeof(raxNode)+trimmedlen+raxPadding(trimmedlen)+
sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
trimmed = rax_malloc(nodesize);
}
if (postfixlen) {
nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
sizeof(raxNode*);
postfix = rax_malloc(nodesize);
}
/* OOM? Abort now that the tree is untouched. */
if (splitnode == NULL ||
(trimmedlen && trimmed == NULL) ||
(postfixlen && postfix == NULL))
{
rax_free(splitnode);
rax_free(trimmed);
rax_free(postfix);
errno = ENOMEM;
return 0;
}
splitnode->data[0] = h->data[j];
if (j == 0) {
/* 3a: Replace the old node with the split node. */
if (h->iskey) {
void *ndata = raxGetData(h);
raxSetData(splitnode,ndata);
}
memcpy(parentlink,&splitnode,sizeof(splitnode));
} else {
/* 3b: Trim the compressed node. */
trimmed->size = j;
memcpy(trimmed->data,h->data,j);
trimmed->iscompr = j > 1 ? 1 : 0;
trimmed->iskey = h->iskey;
trimmed->isnull = h->isnull;
if (h->iskey && !h->isnull) {
void *ndata = raxGetData(h);
raxSetData(trimmed,ndata);
}
raxNode **cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&splitnode,sizeof(splitnode));
memcpy(parentlink,&trimmed,sizeof(trimmed));
parentlink = cp; /* Set parentlink to splitnode parent. */
rax->numnodes++;
}
/* 4: Create the postfix node: what remains of the original
* compressed node after the split. */
if (postfixlen) {
/* 4a: create a postfix node. */
postfix->iskey = 0;
postfix->isnull = 0;
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
memcpy(postfix->data,h->data+j+1,postfixlen);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
} else {
/* 4b: just use next as postfix node. */
postfix = next;
}
/* 5: Set splitnode first child as the postfix node. */
raxNode **splitchild = raxNodeLastChildPtr(splitnode);
memcpy(splitchild,&postfix,sizeof(postfix));
/* 6. Continue insertion: this will cause the splitnode to
* get a new child (the non common character at the currently
* inserted key). */
rax_free(h);
h = splitnode;
} else if (h->iscompr && i == len) {
/* ------------------------- ALGORITHM 2 --------------------------- */
debugf("ALGO 2: Stopped at compressed node %.*s (%p) j = %d\n",
h->size, h->data, (void*)h, j);
/* Allocate postfix & trimmed nodes ASAP to fail for OOM gracefully. */
size_t postfixlen = h->size - j;
size_t nodesize = sizeof(raxNode)+postfixlen+raxPadding(postfixlen)+
sizeof(raxNode*);
if (data != NULL) nodesize += sizeof(void*);
raxNode *postfix = rax_malloc(nodesize);
nodesize = sizeof(raxNode)+j+raxPadding(j)+sizeof(raxNode*);
if (h->iskey && !h->isnull) nodesize += sizeof(void*);
raxNode *trimmed = rax_malloc(nodesize);
if (postfix == NULL || trimmed == NULL) {
rax_free(postfix);
rax_free(trimmed);
errno = ENOMEM;
return 0;
}
/* 1: Save next pointer. */
raxNode **childfield = raxNodeLastChildPtr(h);
raxNode *next;
memcpy(&next,childfield,sizeof(next));
/* 2: Create the postfix node. */
postfix->size = postfixlen;
postfix->iscompr = postfixlen > 1;
postfix->iskey = 1;
postfix->isnull = 0;
memcpy(postfix->data,h->data+j,postfixlen);
raxSetData(postfix,data);
raxNode **cp = raxNodeLastChildPtr(postfix);
memcpy(cp,&next,sizeof(next));
rax->numnodes++;
/* 3: Trim the compressed node. */
trimmed->size = j;
trimmed->iscompr = j > 1;
trimmed->iskey = 0;
trimmed->isnull = 0;
memcpy(trimmed->data,h->data,j);
memcpy(parentlink,&trimmed,sizeof(trimmed));
if (h->iskey) {
void *aux = raxGetData(h);
raxSetData(trimmed,aux);
}
/* Fix the trimmed node child pointer to point to
* the postfix node. */
cp = raxNodeLastChildPtr(trimmed);
memcpy(cp,&postfix,sizeof(postfix));
/* Finish! We don't need to continue with the insertion
* algorithm for ALGO 2. The key is already inserted. */
rax->numele++;
rax_free(h);
return 1; /* Key inserted. */
}
/* We walked the radix tree as far as we could, but still there are left
* chars in our string. We need to insert the missing nodes. */
while(i < len) {
raxNode *child;
/* If this node is going to have a single child, and there
* are other characters, so that that would result in a chain
* of single-childed nodes, turn it into a compressed node. */
if (h->size == 0 && len-i > 1) {
debugf("Inserting compressed node\n");
size_t comprsize = len-i;
if (comprsize > RAX_NODE_MAX_SIZE)
comprsize = RAX_NODE_MAX_SIZE;
raxNode *newh = raxCompressNode(h,s+i,comprsize,&child);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = raxNodeLastChildPtr(h);
i += comprsize;
} else {
debugf("Inserting normal node\n");
raxNode **new_parentlink;
raxNode *newh = raxAddChild(h,s[i],&child,&new_parentlink);
if (newh == NULL) goto oom;
h = newh;
memcpy(parentlink,&h,sizeof(h));
parentlink = new_parentlink;
i++;
}
rax->numnodes++;
h = child;
}
raxNode *newh = raxReallocForData(h,data);
if (newh == NULL) goto oom;
h = newh;
if (!h->iskey) rax->numele++;
raxSetData(h,data);
memcpy(parentlink,&h,sizeof(h));
return 1; /* Element inserted. */
oom:
/* This code path handles out of memory after part of the sub-tree was
* already modified. Set the node as a key, and then remove it. However we
* do that only if the node is a terminal node, otherwise if the OOM
* happened reallocating a node in the middle, we don't need to free
* anything. */
if (h->size == 0) {
h->isnull = 1;
h->iskey = 1;
rax->numele++; /* Compensate the next remove. */
assert(raxRemove(rax,s,i,NULL) != 0);
}
errno = ENOMEM;
return 0;
}
/* Overwriting insert. Just a wrapper for raxGenericInsert() that will
* update the element if there is already one for the same key. */
int raxInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
return raxGenericInsert(rax,s,len,data,old,1);
}
/* Non overwriting insert function: if an element with the same key
* exists, the value is not updated and the function returns 0.
* This is just a wrapper for raxGenericInsert(). */
int raxTryInsert(rax *rax, unsigned char *s, size_t len, void *data, void **old) {
return raxGenericInsert(rax,s,len,data,old,0);
}
/* Find a key in the rax: return 1 if the item is found, 0 otherwise.
* If there is an item and 'value' is passed in a non-NULL pointer,
* the value associated with the item is set at that address. */
int raxFind(rax *rax, unsigned char *s, size_t len, void **value) {
raxNode *h;
debugf("### Lookup: %.*s\n", (int)len, s);
int splitpos = 0;
size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,NULL);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey)
return 0;
if (value != NULL) *value = raxGetData(h);
return 1;
}
/* Return the memory address where the 'parent' node stores the specified
* 'child' pointer, so that the caller can update the pointer with another
* one if needed. The function assumes it will find a match, otherwise the
* operation is an undefined behavior (it will continue scanning the
* memory without any bound checking). */
raxNode **raxFindParentLink(raxNode *parent, raxNode *child) {
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode *c;
while(1) {
memcpy(&c,cp,sizeof(c));
if (c == child) break;
cp++;
}
return cp;
}
/* Low level child removal from node. The new node pointer (after the child
* removal) is returned. Note that this function does not fix the pointer
* of the parent node in its parent, so this task is up to the caller.
* The function never fails for out of memory. */
raxNode *raxRemoveChild(raxNode *parent, raxNode *child) {
debugnode("raxRemoveChild before", parent);
/* If parent is a compressed node (having a single child, as for definition
* of the data structure), the removal of the child consists into turning
* it into a normal node without children. */
if (parent->iscompr) {
void *data = NULL;
if (parent->iskey) data = raxGetData(parent);
parent->isnull = 0;
parent->iscompr = 0;
parent->size = 0;
if (parent->iskey) raxSetData(parent,data);
debugnode("raxRemoveChild after", parent);
return parent;
}
/* Otherwise we need to scan for the child pointer and memmove()
* accordingly.
*
* 1. To start we seek the first element in both the children
* pointers and edge bytes in the node. */
raxNode **cp = raxNodeFirstChildPtr(parent);
raxNode **c = cp;
unsigned char *e = parent->data;
/* 2. Search the child pointer to remove inside the array of children
* pointers. */
while(1) {
raxNode *aux;
memcpy(&aux,c,sizeof(aux));
if (aux == child) break;
c++;
e++;
}
/* 3. Remove the edge and the pointer by memmoving the remaining children
* pointer and edge bytes one position before. */
int taillen = parent->size - (e - parent->data) - 1;
debugf("raxRemoveChild tail len: %d\n", taillen);
memmove(e,e+1,taillen);
/* Compute the shift, that is the amount of bytes we should move our
* child pointers to the left, since the removal of one edge character
* and the corresponding padding change, may change the layout.
* We just check if in the old version of the node there was at the
* end just a single byte and all padding: in that case removing one char
* will remove a whole sizeof(void*) word. */
size_t shift = ((parent->size+4) % sizeof(void*)) == 1 ? sizeof(void*) : 0;
/* Move the children pointers before the deletion point. */
if (shift)
memmove(((char*)cp)-shift,cp,(parent->size-taillen-1)*sizeof(raxNode**));
/* Move the remaining "tail" pointers at the right position as well. */
size_t valuelen = (parent->iskey && !parent->isnull) ? sizeof(void*) : 0;
memmove(((char*)c)-shift,c+1,taillen*sizeof(raxNode**)+valuelen);
/* 4. Update size. */
parent->size--;
/* realloc the node according to the theoretical memory usage, to free
* data if we are over-allocating right now. */
raxNode *newnode = rax_realloc(parent,raxNodeCurrentLength(parent));
if (newnode) {
debugnode("raxRemoveChild after", newnode);
}
/* Note: if rax_realloc() fails we just return the old address, which
* is valid. */
return newnode ? newnode : parent;
}
/* Remove the specified item. Returns 1 if the item was found and
* deleted, 0 otherwise. */
int raxRemove(rax *rax, unsigned char *s, size_t len, void **old) {
raxNode *h;
raxStack ts;
debugf("### Delete: %.*s\n", (int)len, s);
raxStackInit(&ts);
int splitpos = 0;
size_t i = raxLowWalk(rax,s,len,&h,NULL,&splitpos,&ts);
if (i != len || (h->iscompr && splitpos != 0) || !h->iskey) {
raxStackFree(&ts);
return 0;
}
if (old) *old = raxGetData(h);
h->iskey = 0;
rax->numele--;
/* If this node has no children, the deletion needs to reclaim the
* no longer used nodes. This is an iterative process that needs to
* walk the three upward, deleting all the nodes with just one child
* that are not keys, until the head of the rax is reached or the first
* node with more than one child is found. */
int trycompress = 0; /* Will be set to 1 if we should try to optimize the
tree resulting from the deletion. */
if (h->size == 0) {
debugf("Key deleted in node without children. Cleanup needed.\n");
raxNode *child = NULL;
while(h != rax->head) {
child = h;
debugf("Freeing child %p [%.*s] key:%d\n", (void*)child,
(int)child->size, (char*)child->data, child->iskey);
rax_free(child);
rax->numnodes--;
h = raxStackPop(&ts);
/* If this node has more then one child, or actually holds
* a key, stop here. */
if (h->iskey || (!h->iscompr && h->size != 1)) break;
}
if (child) {
debugf("Unlinking child %p from parent %p\n",
(void*)child, (void*)h);
raxNode *new = raxRemoveChild(h,child);
if (new != h) {
raxNode *parent = raxStackPeek(&ts);
raxNode **parentlink;
if (parent == NULL) {
parentlink = &rax->head;
} else {
parentlink = raxFindParentLink(parent,h);
}
memcpy(parentlink,&new,sizeof(new));
}
/* If after the removal the node has just a single child
* and is not a key, we need to try to compress it. */
if (new->size == 1 && new->iskey == 0) {
trycompress = 1;
h = new;
}
}
} else if (h->size == 1) {
/* If the node had just one child, after the removal of the key
* further compression with adjacent nodes is potentially possible. */
trycompress = 1;
}
/* Don't try node compression if our nodes pointers stack is not
* complete because of OOM while executing raxLowWalk() */
if (trycompress && ts.oom) trycompress = 0;
/* Recompression: if trycompress is true, 'h' points to a radix tree node
* that changed in a way that could allow to compress nodes in this
* sub-branch. Compressed nodes represent chains of nodes that are not
* keys and have a single child, so there are two deletion events that
* may alter the tree so that further compression is needed:
*
* 1) A node with a single child was a key and now no longer is a key.
* 2) A node with two children now has just one child.
*
* We try to navigate upward till there are other nodes that can be
* compressed, when we reach the upper node which is not a key and has
* a single child, we scan the chain of children to collect the
* compressible part of the tree, and replace the current node with the
* new one, fixing the child pointer to reference the first non
* compressible node.
*
* Example of case "1". A tree stores the keys "FOO" = 1 and
* "FOOBAR" = 2:
*
*
* "FOO" -> "BAR" -> [] (2)
* (1)
*
* After the removal of "FOO" the tree can be compressed as:
*
* "FOOBAR" -> [] (2)
*
*
* Example of case "2". A tree stores the keys "FOOBAR" = 1 and
* "FOOTER" = 2:
*
* |B| -> "AR" -> [] (1)
* "FOO" -> |-|
* |T| -> "ER" -> [] (2)
*
* After the removal of "FOOTER" the resulting tree is:
*
* "FOO" -> |B| -> "AR" -> [] (1)
*
* That can be compressed into:
*
* "FOOBAR" -> [] (1)
*/
if (trycompress) {
debugf("After removing %.*s:\n", (int)len, s);
debugnode("Compression may be needed",h);
debugf("Seek start node\n");
/* Try to reach the upper node that is compressible.
* At the end of the loop 'h' will point to the first node we
* can try to compress and 'parent' to its parent. */
raxNode *parent;
while(1) {
parent = raxStackPop(&ts);
if (!parent || parent->iskey ||
(!parent->iscompr && parent->size != 1)) break;
h = parent;
debugnode("Going up to",h);
}
raxNode *start = h; /* Compression starting node. */
/* Scan chain of nodes we can compress. */
size_t comprsize = h->size;
int nodes = 1;
while(h->size != 0) {
raxNode **cp = raxNodeLastChildPtr(h);
memcpy(&h,cp,sizeof(h));
if (h->iskey || (!h->iscompr && h->size != 1)) break;
/* Stop here if going to the next node would result into
* a compressed node larger than h->size can hold. */
if (comprsize + h->size > RAX_NODE_MAX_SIZE) break;
nodes++;
comprsize += h->size;
}
if (nodes > 1) {
/* If we can compress, create the new node and populate it. */
size_t nodesize =
sizeof(raxNode)+comprsize+raxPadding(comprsize)+sizeof(raxNode*);
raxNode *new = rax_malloc(nodesize);
/* An out of memory here just means we cannot optimize this
* node, but the tree is left in a consistent state. */
if (new == NULL) {
raxStackFree(&ts);
return 1;
}
new->iskey = 0;
new->isnull = 0;
new->iscompr = 1;
new->size = comprsize;
rax->numnodes++;
/* Scan again, this time to populate the new node content and
* to fix the new node child pointer. At the same time we free
* all the nodes that we'll no longer use. */
comprsize = 0;
h = start;
while(h->size != 0) {
memcpy(new->data+comprsize,h->data,h->size);
comprsize += h->size;
raxNode **cp = raxNodeLastChildPtr(h);
raxNode *tofree = h;
memcpy(&h,cp,sizeof(h));
rax_free(tofree); rax->numnodes--;
if (h->iskey || (!h->iscompr && h->size != 1)) break;
}
debugnode("New node",new);
/* Now 'h' points to the first node that we still need to use,
* so our new node child pointer will point to it. */
raxNode **cp = raxNodeLastChildPtr(new);
memcpy(cp,&h,sizeof(h));
/* Fix parent link. */
if (parent) {
raxNode **parentlink = raxFindParentLink(parent,start);
memcpy(parentlink,&new,sizeof(new));
} else {
rax->head = new;
}
debugf("Compressed %d nodes, %d total bytes\n",
nodes, (int)comprsize);
}
}
raxStackFree(&ts);
return 1;
}
/* This is the core of raxFree(): performs a depth-first scan of the
* tree and releases all the nodes found. */
void raxRecursiveFree(rax *rax, raxNode *n, void (*free_callback)(void*)) {
debugnode("free traversing",n);
int numchildren = n->iscompr ? 1 : n->size;
raxNode **cp = raxNodeLastChildPtr(n);
while(numchildren--) {
raxNode *child;
memcpy(&child,cp,sizeof(child));
raxRecursiveFree(rax,child,free_callback);
cp--;
}
debugnode("free depth-first",n);
if (free_callback && n->iskey && !n->isnull)
free_callback(raxGetData(n));
rax_free(n);
rax->numnodes--;
}
/* Free a whole radix tree, calling the specified callback in order to
* free the auxiliary data. */
void raxFreeWithCallback(rax *rax, void (*free_callback)(void*)) {
raxRecursiveFree(rax,rax->head,free_callback);
assert(rax->numnodes == 0);
rax_free(rax);
}
/* Free a whole radix tree. */
void raxFree(rax *rax) {
raxFreeWithCallback(rax,NULL);
}
/* ------------------------------- Iterator --------------------------------- */
/* Initialize a Rax iterator. This call should be performed a single time
* to initialize the iterator, and must be followed by a raxSeek() call,
* otherwise the raxPrev()/raxNext() functions will just return EOF. */
void raxStart(raxIterator *it, rax *rt) {
it->flags = RAX_ITER_EOF; /* No crash if the iterator is not seeked. */
it->rt = rt;
it->key_len = 0;
it->key = it->key_static_string;
it->key_max = RAX_ITER_STATIC_LEN;
it->data = NULL;
it->node_cb = NULL;
raxStackInit(&it->stack);
}
/* Append characters at the current key string of the iterator 'it'. This
* is a low level function used to implement the iterator, not callable by
* the user. Returns 0 on out of memory, otherwise 1 is returned. */
int raxIteratorAddChars(raxIterator *it, unsigned char *s, size_t len) {
if (len == 0) return 1;
if (it->key_max < it->key_len+len) {
unsigned char *old = (it->key == it->key_static_string) ? NULL :
it->key;
size_t new_max = (it->key_len+len)*2;
it->key = rax_realloc(old,new_max);
if (it->key == NULL) {
it->key = (!old) ? it->key_static_string : old;
errno = ENOMEM;
return 0;
}
if (old == NULL) memcpy(it->key,it->key_static_string,it->key_len);
it->key_max = new_max;
}
/* Use memmove since there could be an overlap between 's' and
* it->key when we use the current key in order to re-seek. */
memmove(it->key+it->key_len,s,len);
it->key_len += len;
return 1;
}
/* Remove the specified number of chars from the right of the current
* iterator key. */
void raxIteratorDelChars(raxIterator *it, size_t count) {
it->key_len -= count;
}
/* Do an iteration step towards the next element. At the end of the step the
* iterator key will represent the (new) current key. If it is not possible
* to step in the specified direction since there are no longer elements, the
* iterator is flagged with RAX_ITER_EOF.
*
* If 'noup' is true the function starts directly scanning for the next
* lexicographically smaller children, and the current node is already assumed
* to be the parent of the last key node, so the first operation to go back to
* the parent will be skipped. This option is used by raxSeek() when
* implementing seeking a non existing element with the ">" or "<" options:
* the starting node is not a key in that particular case, so we start the scan
* from a node that does not represent the key set.
*
* The function returns 1 on success or 0 on out of memory. */
int raxIteratorNextStep(raxIterator *it, int noup) {
if (it->flags & RAX_ITER_EOF) {
return 1;
} else if (it->flags & RAX_ITER_JUST_SEEKED) {
it->flags &= ~RAX_ITER_JUST_SEEKED;
return 1;
}
/* Save key len, stack items and the node where we are currently
* so that on iterator EOF we can restore the current key and state. */
size_t orig_key_len = it->key_len;
size_t orig_stack_items = it->stack.items;
raxNode *orig_node = it->node;
while(1) {
int children = it->node->iscompr ? 1 : it->node->size;
if (!noup && children) {
debugf("GO DEEPER\n");
/* Seek the lexicographically smaller key in this subtree, which
* is the first one found always going towards the first child
* of every successive node. */
if (!raxStackPush(&it->stack,it->node)) return 0;
raxNode **cp = raxNodeFirstChildPtr(it->node);
if (!raxIteratorAddChars(it,it->node->data,
it->node->iscompr ? it->node->size : 1)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
/* Call the node callback if any, and replace the node pointer
* if the callback returns true. */
if (it->node_cb && it->node_cb(&it->node))
memcpy(cp,&it->node,sizeof(it->node));
/* For "next" step, stop every time we find a key along the
* way, since the key is lexicographically smaller compared to
* what follows in the sub-children. */
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
} else {
/* If we finished exploring the previous sub-tree, switch to the
* new one: go upper until a node is found where there are
* children representing keys lexicographically greater than the
* current key. */
while(1) {
int old_noup = noup;
/* Already on head? Can't go up, iteration finished. */
if (!noup && it->node == it->rt->head) {
it->flags |= RAX_ITER_EOF;
it->stack.items = orig_stack_items;
it->key_len = orig_key_len;
it->node = orig_node;
return 1;
}
/* If there are no children at the current node, try parent's
* next child. */
unsigned char prevchild = it->key[it->key_len-1];
if (!noup) {
it->node = raxStackPop(&it->stack);
} else {
noup = 0;
}
/* Adjust the current key to represent the node we are
* at. */
int todel = it->node->iscompr ? it->node->size : 1;
raxIteratorDelChars(it,todel);
/* Try visiting the next child if there was at least one
* additional child. */
if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
raxNode **cp = raxNodeFirstChildPtr(it->node);
int i = 0;
while (i < it->node->size) {
debugf("SCAN NEXT %c\n", it->node->data[i]);
if (it->node->data[i] > prevchild) break;
i++;
cp++;
}
if (i != it->node->size) {
debugf("SCAN found a new node\n");
raxIteratorAddChars(it,it->node->data+i,1);
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
/* Call the node callback if any, and replace the node
* pointer if the callback returns true. */
if (it->node_cb && it->node_cb(&it->node))
memcpy(cp,&it->node,sizeof(it->node));
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
break;
}
}
}
}
}
}
/* Seek the greatest key in the subtree at the current node. Return 0 on
* out of memory, otherwise 1. This is a helper function for different
* iteration functions below. */
int raxSeekGreatest(raxIterator *it) {
while(it->node->size) {
if (it->node->iscompr) {
if (!raxIteratorAddChars(it,it->node->data,
it->node->size)) return 0;
} else {
if (!raxIteratorAddChars(it,it->node->data+it->node->size-1,1))
return 0;
}
raxNode **cp = raxNodeLastChildPtr(it->node);
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
}
return 1;
}
/* Like raxIteratorNextStep() but implements an iteration step moving
* to the lexicographically previous element. The 'noup' option has a similar
* effect to the one of raxIteratorNextStep(). */
int raxIteratorPrevStep(raxIterator *it, int noup) {
if (it->flags & RAX_ITER_EOF) {
return 1;
} else if (it->flags & RAX_ITER_JUST_SEEKED) {
it->flags &= ~RAX_ITER_JUST_SEEKED;
return 1;
}
/* Save key len, stack items and the node where we are currently
* so that on iterator EOF we can restore the current key and state. */
size_t orig_key_len = it->key_len;
size_t orig_stack_items = it->stack.items;
raxNode *orig_node = it->node;
while(1) {
int old_noup = noup;
/* Already on head? Can't go up, iteration finished. */
if (!noup && it->node == it->rt->head) {
it->flags |= RAX_ITER_EOF;
it->stack.items = orig_stack_items;
it->key_len = orig_key_len;
it->node = orig_node;
return 1;
}
unsigned char prevchild = it->key[it->key_len-1];
if (!noup) {
it->node = raxStackPop(&it->stack);
} else {
noup = 0;
}
/* Adjust the current key to represent the node we are
* at. */
int todel = it->node->iscompr ? it->node->size : 1;
raxIteratorDelChars(it,todel);
/* Try visiting the prev child if there is at least one
* child. */
if (!it->node->iscompr && it->node->size > (old_noup ? 0 : 1)) {
raxNode **cp = raxNodeLastChildPtr(it->node);
int i = it->node->size-1;
while (i >= 0) {
debugf("SCAN PREV %c\n", it->node->data[i]);
if (it->node->data[i] < prevchild) break;
i--;
cp--;
}
/* If we found a new subtree to explore in this node,
* go deeper following all the last children in order to
* find the key lexicographically greater. */
if (i != -1) {
debugf("SCAN found a new node\n");
/* Enter the node we just found. */
if (!raxIteratorAddChars(it,it->node->data+i,1)) return 0;
if (!raxStackPush(&it->stack,it->node)) return 0;
memcpy(&it->node,cp,sizeof(it->node));
/* Seek sub-tree max. */
if (!raxSeekGreatest(it)) return 0;
}
}
/* Return the key: this could be the key we found scanning a new
* subtree, or if we did not find a new subtree to explore here,
* before giving up with this node, check if it's a key itself. */
if (it->node->iskey) {
it->data = raxGetData(it->node);
return 1;
}
}
}
/* Seek an iterator at the specified element.
* Return 0 if the seek failed for syntax error or out of memory. Otherwise
* 1 is returned. When 0 is returned for out of memory, errno is set to
* the ENOMEM value. */
int raxSeek(raxIterator *it, const char *op, unsigned char *ele, size_t len) {
int eq = 0, lt = 0, gt = 0, first = 0, last = 0;
it->stack.items = 0; /* Just resetting. Initialized by raxStart(). */
it->flags |= RAX_ITER_JUST_SEEKED;
it->flags &= ~RAX_ITER_EOF;
it->key_len = 0;
it->node = NULL;
/* Set flags according to the operator used to perform the seek. */
if (op[0] == '>') {
gt = 1;
if (op[1] == '=') eq = 1;
} else if (op[0] == '<') {
lt = 1;
if (op[1] == '=') eq = 1;
} else if (op[0] == '=') {
eq = 1;
} else if (op[0] == '^') {
first = 1;
} else if (op[0] == '$') {
last = 1;
} else {
errno = 0;
return 0; /* Error. */
}
/* If there are no elements, set the EOF condition immediately and
* return. */
if (it->rt->numele == 0) {
it->flags |= RAX_ITER_EOF;
return 1;
}
if (first) {
/* Seeking the first key greater or equal to the empty string
* is equivalent to seeking the smaller key available. */
return raxSeek(it,">=",NULL,0);
}
if (last) {
/* Find the greatest key taking always the last child till a
* final node is found. */
it->node = it->rt->head;
if (!raxSeekGreatest(it)) return 0;
assert(it->node->iskey);
it->data = raxGetData(it->node);
return 1;
}
/* We need to seek the specified key. What we do here is to actually
* perform a lookup, and later invoke the prev/next key code that
* we already use for iteration. */
int splitpos = 0;
size_t i = raxLowWalk(it->rt,ele,len,&it->node,NULL,&splitpos,&it->stack);
/* Return OOM on incomplete stack info. */
if (it->stack.oom) return 0;
if (eq && i == len && (!it->node->iscompr || splitpos == 0) &&
it->node->iskey)
{
/* We found our node, since the key matches and we have an
* "equal" condition. */
if (!raxIteratorAddChars(it,ele,len)) return 0; /* OOM. */
it->data = raxGetData(it->node);
} else if (lt || gt) {
/* Exact key not found or eq flag not set. We have to set as current
* key the one represented by the node we stopped at, and perform
* a next/prev operation to seek. */
raxIteratorAddChars(it, ele, i-splitpos);
/* We need to set the iterator in the correct state to call next/prev
* step in order to seek the desired element. */
debugf("After initial seek: i=%d len=%d key=%.*s\n",
(int)i, (int)len, (int)it->key_len, it->key);
if (i != len && !it->node->iscompr) {
/* If we stopped in the middle of a normal node because of a
* mismatch, add the mismatching character to the current key
* and call the iterator with the 'noup' flag so that it will try
* to seek the next/prev child in the current node directly based
* on the mismatching character. */
if (!raxIteratorAddChars(it,ele+i,1)) return 0;
debugf("Seek normal node on mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (lt && !raxIteratorPrevStep(it,1)) return 0;
if (gt && !raxIteratorNextStep(it,1)) return 0;
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
} else if (i != len && it->node->iscompr) {
debugf("Compressed mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
/* In case of a mismatch within a compressed node. */
int nodechar = it->node->data[splitpos];
int keychar = ele[i];
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (gt) {
/* If the key the compressed node represents is greater
* than our seek element, continue forward, otherwise set the
* state in order to go back to the next sub-tree. */
if (nodechar > keychar) {
if (!raxIteratorNextStep(it,0)) return 0;
} else {
if (!raxIteratorAddChars(it,it->node->data,it->node->size))
return 0;
if (!raxIteratorNextStep(it,1)) return 0;
}
}
if (lt) {
/* If the key the compressed node represents is smaller
* than our seek element, seek the greater key in this
* subtree, otherwise set the state in order to go back to
* the previous sub-tree. */
if (nodechar < keychar) {
if (!raxSeekGreatest(it)) return 0;
it->data = raxGetData(it->node);
} else {
if (!raxIteratorAddChars(it,it->node->data,it->node->size))
return 0;
if (!raxIteratorPrevStep(it,1)) return 0;
}
}
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
} else {
debugf("No mismatch: %.*s\n",
(int)it->key_len, (char*)it->key);
/* If there was no mismatch we are into a node representing the
* key, (but which is not a key or the seek operator does not
* include 'eq'), or we stopped in the middle of a compressed node
* after processing all the key. Continue iterating as this was
* a legitimate key we stopped at. */
it->flags &= ~RAX_ITER_JUST_SEEKED;
if (it->node->iscompr && it->node->iskey && splitpos && lt) {
/* If we stopped in the middle of a compressed node with
* perfect match, and the condition is to seek a key "<" than
* the specified one, then if this node is a key it already
* represents our match. For instance we may have nodes:
*
* "f" -> "oobar" = 1 -> "" = 2
*
* Representing keys "f" = 1, "foobar" = 2. A seek for
* the key < "foo" will stop in the middle of the "oobar"
* node, but will be our match, representing the key "f".
*
* So in that case, we don't seek backward. */
it->data = raxGetData(it->node);
} else {
if (gt && !raxIteratorNextStep(it,0)) return 0;
if (lt && !raxIteratorPrevStep(it,0)) return 0;
}
it->flags |= RAX_ITER_JUST_SEEKED; /* Ignore next call. */
}
} else {
/* If we are here just eq was set but no match was found. */
it->flags |= RAX_ITER_EOF;
return 1;
}
return 1;
}
/* Go to the next element in the scope of the iterator 'it'.
* If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
* returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
int raxNext(raxIterator *it) {
if (!raxIteratorNextStep(it,0)) {
errno = ENOMEM;
return 0;
}
if (it->flags & RAX_ITER_EOF) {
errno = 0;
return 0;
}
return 1;
}
/* Go to the previous element in the scope of the iterator 'it'.
* If EOF (or out of memory) is reached, 0 is returned, otherwise 1 is
* returned. In case 0 is returned because of OOM, errno is set to ENOMEM. */
int raxPrev(raxIterator *it) {
if (!raxIteratorPrevStep(it,0)) {
errno = ENOMEM;
return 0;
}
if (it->flags & RAX_ITER_EOF) {
errno = 0;
return 0;
}
return 1;
}
/* Perform a random walk starting in the current position of the iterator.
* Return 0 if the tree is empty or on out of memory. Otherwise 1 is returned
* and the iterator is set to the node reached after doing a random walk
* of 'steps' steps. If the 'steps' argument is 0, the random walk is performed
* using a random number of steps between 1 and two times the logarithm of
* the number of elements.
*
* NOTE: if you use this function to generate random elements from the radix
* tree, expect a disappointing distribution. A random walk produces good
* random elements if the tree is not sparse, however in the case of a radix
* tree certain keys will be reported much more often than others. At least
* this function should be able to explore every possible element eventually. */
int raxRandomWalk(raxIterator *it, size_t steps) {
if (it->rt->numele == 0) {
it->flags |= RAX_ITER_EOF;
return 0;
}
if (steps == 0) {
size_t fle = 1+floor(log(it->rt->numele));
fle *= 2;
steps = 1 + rand() % fle;
}
raxNode *n = it->node;
while(steps > 0 || !n->iskey) {
int numchildren = n->iscompr ? 1 : n->size;
int r = rand() % (numchildren+(n != it->rt->head));
if (r == numchildren) {
/* Go up to parent. */
n = raxStackPop(&it->stack);
int todel = n->iscompr ? n->size : 1;
raxIteratorDelChars(it,todel);
} else {
/* Select a random child. */
if (n->iscompr) {
if (!raxIteratorAddChars(it,n->data,n->size)) return 0;
} else {
if (!raxIteratorAddChars(it,n->data+r,1)) return 0;
}
raxNode **cp = raxNodeFirstChildPtr(n)+r;
if (!raxStackPush(&it->stack,n)) return 0;
memcpy(&n,cp,sizeof(n));
}
if (n->iskey) steps--;
}
it->node = n;
it->data = raxGetData(it->node);
return 1;
}
/* Compare the key currently pointed by the iterator to the specified
* key according to the specified operator. Returns 1 if the comparison is
* true, otherwise 0 is returned. */
int raxCompare(raxIterator *iter, const char *op, unsigned char *key, size_t key_len) {
int eq = 0, lt = 0, gt = 0;
if (op[0] == '=' || op[1] == '=') eq = 1;
if (op[0] == '>') gt = 1;
else if (op[0] == '<') lt = 1;
else if (op[1] != '=') return 0; /* Syntax error. */
size_t minlen = key_len < iter->key_len ? key_len : iter->key_len;
int cmp = memcmp(iter->key,key,minlen);
/* Handle == */
if (lt == 0 && gt == 0) return cmp == 0 && key_len == iter->key_len;
/* Handle >, >=, <, <= */
if (cmp == 0) {
/* Same prefix: longer wins. */
if (eq && key_len == iter->key_len) return 1;
else if (lt) return iter->key_len < key_len;
else if (gt) return iter->key_len > key_len;
else return 0; /* Avoid warning, just 'eq' is handled before. */
} else if (cmp > 0) {
return gt ? 1 : 0;
} else /* (cmp < 0) */ {
return lt ? 1 : 0;
}
}
/* Free the iterator. */
void raxStop(raxIterator *it) {
if (it->key != it->key_static_string) rax_free(it->key);
raxStackFree(&it->stack);
}
/* Return if the iterator is in an EOF state. This happens when raxSeek()
* failed to seek an appropriate element, so that raxNext() or raxPrev()
* will return zero, or when an EOF condition was reached while iterating
* with raxNext() and raxPrev(). */
int raxEOF(raxIterator *it) {
return it->flags & RAX_ITER_EOF;
}
/* Return the number of elements inside the radix tree. */
uint64_t raxSize(rax *rax) {
return rax->numele;
}
/* ----------------------------- Introspection ------------------------------ */
/* This function is mostly used for debugging and learning purposes.
* It shows an ASCII representation of a tree on standard output, outline
* all the nodes and the contained keys.
*
* The representation is as follow:
*
* "foobar" (compressed node)
* [abc] (normal node with three children)
* [abc]=0x12345678 (node is a key, pointing to value 0x12345678)
* [] (a normal empty node)
*
* Children are represented in new indented lines, each children prefixed by
* the "`-(x)" string, where "x" is the edge byte.
*
* [abc]
* `-(a) "ladin"
* `-(b) [kj]
* `-(c) []
*
* However when a node has a single child the following representation
* is used instead:
*
* [abc] -> "ladin" -> []
*/
/* The actual implementation of raxShow(). */
void raxRecursiveShow(int level, int lpad, raxNode *n) {
char s = n->iscompr ? '"' : '[';
char e = n->iscompr ? '"' : ']';
int numchars = printf("%c%.*s%c", s, n->size, n->data, e);
if (n->iskey) {
numchars += printf("=%p",raxGetData(n));
}
int numchildren = n->iscompr ? 1 : n->size;
/* Note that 7 and 4 magic constants are the string length
* of " `-(x) " and " -> " respectively. */
if (level) {
lpad += (numchildren > 1) ? 7 : 4;
if (numchildren == 1) lpad += numchars;
}
raxNode **cp = raxNodeFirstChildPtr(n);
for (int i = 0; i < numchildren; i++) {
char *branch = " `-(%c) ";
if (numchildren > 1) {
printf("\n");
for (int j = 0; j < lpad; j++) putchar(' ');
printf(branch,n->data[i]);
} else {
printf(" -> ");
}
raxNode *child;
memcpy(&child,cp,sizeof(child));
raxRecursiveShow(level+1,lpad,child);
cp++;
}
}
/* Show a tree, as outlined in the comment above. */
void raxShow(rax *rax) {
raxRecursiveShow(0,0,rax->head);
putchar('\n');
}
/* Used by debugnode() macro to show info about a given node. */
void raxDebugShowNode(const char *msg, raxNode *n) {
if (raxDebugMsg == 0) return;
printf("%s: %p [%.*s] key:%u size:%u children:",
msg, (void*)n, (int)n->size, (char*)n->data, n->iskey, n->size);
int numcld = n->iscompr ? 1 : n->size;
raxNode **cldptr = raxNodeLastChildPtr(n) - (numcld-1);
while(numcld--) {
raxNode *child;
memcpy(&child,cldptr,sizeof(child));
cldptr++;
printf("%p ", (void*)child);
}
printf("\n");
fflush(stdout);
}
/* Touch all the nodes of a tree returning a check sum. This is useful
* in order to make Valgrind detect if there is something wrong while
* reading the data structure.
*
* This function was used in order to identify Rax bugs after a big refactoring
* using this technique:
*
* 1. The rax-test is executed using Valgrind, adding a printf() so that for
* the fuzz tester we see what iteration in the loop we are in.
* 2. After every modification of the radix tree made by the fuzz tester
* in rax-test.c, we add a call to raxTouch().
* 3. Now as soon as an operation will corrupt the tree, raxTouch() will
* detect it (via Valgrind) immediately. We can add more calls to narrow
* the state.
* 4. At this point a good idea is to enable Rax debugging messages immediately
* before the moment the tree is corrupted, to see what happens.
*/
unsigned long raxTouch(raxNode *n) {
debugf("Touching %p\n", (void*)n);
unsigned long sum = 0;
if (n->iskey) {
sum += (unsigned long)raxGetData(n);
}
int numchildren = n->iscompr ? 1 : n->size;
raxNode **cp = raxNodeFirstChildPtr(n);
int count = 0;
for (int i = 0; i < numchildren; i++) {
if (numchildren > 1) {
sum += (long)n->data[i];
}
raxNode *child;
memcpy(&child,cp,sizeof(child));
if (child == (void*)0x65d1760) count++;
if (count > 1) exit(1);
sum += raxTouch(child);
cp++;
}
return sum;
}
|