1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
start_server {
tags {"set"}
overrides {
"set-max-intset-entries" 512
}
} {
proc create_set {key entries} {
r del $key
foreach entry $entries { r sadd $key $entry }
}
test {SADD, SCARD, SISMEMBER, SMEMBERS basics - regular set} {
create_set myset {foo}
assert_encoding hashtable myset
assert_equal 1 [r sadd myset bar]
assert_equal 0 [r sadd myset bar]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset foo]
assert_equal 1 [r sismember myset bar]
assert_equal 0 [r sismember myset bla]
assert_equal {bar foo} [lsort [r smembers myset]]
}
test {SADD, SCARD, SISMEMBER, SMEMBERS basics - intset} {
create_set myset {17}
assert_encoding intset myset
assert_equal 1 [r sadd myset 16]
assert_equal 0 [r sadd myset 16]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset 16]
assert_equal 1 [r sismember myset 17]
assert_equal 0 [r sismember myset 18]
assert_equal {16 17} [lsort [r smembers myset]]
}
test {SADD against non set} {
r lpush mylist foo
assert_error WRONGTYPE* {r sadd mylist bar}
}
test "SADD a non-integer against an intset" {
create_set myset {1 2 3}
assert_encoding intset myset
assert_equal 1 [r sadd myset a]
assert_encoding hashtable myset
}
test "SADD an integer larger than 64 bits" {
create_set myset {213244124402402314402033402}
assert_encoding hashtable myset
assert_equal 1 [r sismember myset 213244124402402314402033402]
}
test "SADD overflows the maximum allowed integers in an intset" {
r del myset
for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
assert_encoding intset myset
assert_equal 1 [r sadd myset 512]
assert_encoding hashtable myset
}
test {Variadic SADD} {
r del myset
assert_equal 3 [r sadd myset a b c]
assert_equal 2 [r sadd myset A a b c B]
assert_equal [lsort {A a b c B}] [lsort [r smembers myset]]
}
test "Set encoding after DEBUG RELOAD" {
r del myintset myhashset mylargeintset
for {set i 0} {$i < 100} {incr i} { r sadd myintset $i }
for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
for {set i 0} {$i < 256} {incr i} { r sadd myhashset [format "i%03d" $i] }
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
r debug reload
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
}
test {SREM basics - regular set} {
create_set myset {foo bar ciao}
assert_encoding hashtable myset
assert_equal 0 [r srem myset qux]
assert_equal 1 [r srem myset foo]
assert_equal {bar ciao} [lsort [r smembers myset]]
}
test {SREM basics - intset} {
create_set myset {3 4 5}
assert_encoding intset myset
assert_equal 0 [r srem myset 6]
assert_equal 1 [r srem myset 4]
assert_equal {3 5} [lsort [r smembers myset]]
}
test {SREM with multiple arguments} {
r del myset
r sadd myset a b c d
assert_equal 0 [r srem myset k k k]
assert_equal 2 [r srem myset b d x y]
lsort [r smembers myset]
} {a c}
test {SREM variadic version with more args needed to destroy the key} {
r del myset
r sadd myset 1 2 3
r srem myset 1 2 3 4 5 6 7 8
} {3}
foreach {type} {hashtable intset} {
for {set i 1} {$i <= 5} {incr i} {
r del [format "set%d" $i]
}
for {set i 0} {$i < 200} {incr i} {
r sadd set1 $i
r sadd set2 [expr $i+195]
}
foreach i {199 195 1000 2000} {
r sadd set3 $i
}
for {set i 5} {$i < 200} {incr i} {
r sadd set4 $i
}
r sadd set5 0
# To make sure the sets are encoded as the type we are testing -- also
# when the VM is enabled and the values may be swapped in and out
# while the tests are running -- an extra element is added to every
# set that determines its encoding.
set large 200
if {$type eq "hashtable"} {
set large foo
}
for {set i 1} {$i <= 5} {incr i} {
r sadd [format "set%d" $i] $large
}
test "Generated sets must be encoded as $type" {
for {set i 1} {$i <= 5} {incr i} {
assert_encoding $type [format "set%d" $i]
}
}
test "SINTER with two sets - $type" {
assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1 set2]]
}
test "SINTERSTORE with two sets - $type" {
r sinterstore setres set1 set2
assert_encoding $type setres
assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
}
test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
r debug reload
r sinterstore setres set1 set2
assert_encoding $type setres
assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres]]
}
test "SUNION with two sets - $type" {
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r sunion set1 set2]]
}
test "SUNIONSTORE with two sets - $type" {
r sunionstore setres set1 set2
assert_encoding $type setres
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r smembers setres]]
}
test "SINTER against three sets - $type" {
assert_equal [list 195 199 $large] [lsort [r sinter set1 set2 set3]]
}
test "SINTERSTORE with three sets - $type" {
r sinterstore setres set1 set2 set3
assert_equal [list 195 199 $large] [lsort [r smembers setres]]
}
test "SUNION with non existing keys - $type" {
set expected [lsort -uniq "[r smembers set1] [r smembers set2]"]
assert_equal $expected [lsort [r sunion nokey1 set1 set2 nokey2]]
}
test "SDIFF with two sets - $type" {
assert_equal {0 1 2 3 4} [lsort [r sdiff set1 set4]]
}
test "SDIFF with three sets - $type" {
assert_equal {1 2 3 4} [lsort [r sdiff set1 set4 set5]]
}
test "SDIFFSTORE with three sets - $type" {
r sdiffstore setres set1 set4 set5
# When we start with intsets, we should always end with intsets.
if {$type eq {intset}} {
assert_encoding intset setres
}
assert_equal {1 2 3 4} [lsort [r smembers setres]]
}
}
test "SDIFF with first set empty" {
r del set1 set2 set3
r sadd set2 1 2 3 4
r sadd set3 a b c d
r sdiff set1 set2 set3
} {}
test "SDIFF with same set two times" {
r del set1
r sadd set1 a b c 1 2 3 4 5 6
r sdiff set1 set1
} {}
test "SDIFF fuzzing" {
for {set j 0} {$j < 100} {incr j} {
unset -nocomplain s
array set s {}
set args {}
set num_sets [expr {[randomInt 10]+1}]
for {set i 0} {$i < $num_sets} {incr i} {
set num_elements [randomInt 100]
r del set_$i
lappend args set_$i
while {$num_elements} {
set ele [randomValue]
r sadd set_$i $ele
if {$i == 0} {
set s($ele) x
} else {
unset -nocomplain s($ele)
}
incr num_elements -1
}
}
set result [lsort [r sdiff {*}$args]]
assert_equal $result [lsort [array names s]]
}
}
test "SINTER against non-set should throw error" {
r set key1 x
assert_error "WRONGTYPE*" {r sinter key1 noset}
}
test "SUNION against non-set should throw error" {
r set key1 x
assert_error "WRONGTYPE*" {r sunion key1 noset}
}
test "SINTER should handle non existing key as empty" {
r del set1 set2 set3
r sadd set1 a b c
r sadd set2 b c d
r sinter set1 set2 set3
} {}
test "SINTER with same integer elements but different encoding" {
r del set1 set2
r sadd set1 1 2 3
r sadd set2 1 2 3 a
r srem set2 a
assert_encoding intset set1
assert_encoding hashtable set2
lsort [r sinter set1 set2]
} {1 2 3}
test "SINTERSTORE against non existing keys should delete dstkey" {
r set setres xxx
assert_equal 0 [r sinterstore setres foo111 bar222]
assert_equal 0 [r exists setres]
}
test "SUNIONSTORE against non existing keys should delete dstkey" {
r set setres xxx
assert_equal 0 [r sunionstore setres foo111 bar222]
assert_equal 0 [r exists setres]
}
foreach {type contents} {hashtable {a b c} intset {1 2 3}} {
test "SPOP basics - $type" {
create_set myset $contents
assert_encoding $type myset
assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
assert_equal 0 [r scard myset]
}
test "SRANDMEMBER - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
for {set i 0} {$i < 100} {incr i} {
set myset([r srandmember myset]) 1
}
assert_equal $contents [lsort [array names myset]]
}
}
test "SRANDMEMBER with <count> against non existing key" {
r srandmember nonexisting_key 100
} {}
foreach {type contents} {
hashtable {
1 5 10 50 125 50000 33959417 4775547 65434162
12098459 427716 483706 2726473884 72615637475
MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN
}
intset {
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
}
} {
test "SRANDMEMBER with <count> - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
foreach ele [r smembers myset] {
set myset($ele) 1
}
assert_equal [lsort $contents] [lsort [array names myset]]
# Make sure that a count of 0 is handled correctly.
assert_equal [r srandmember myset 0] {}
# We'll stress different parts of the code, see the implementation
# of SRANDMEMBER for more information, but basically there are
# four different code paths.
#
# PATH 1: Use negative count.
#
# 1) Check that it returns repeated elements.
set res [r srandmember myset -100]
assert_equal [llength $res] 100
# 2) Check that all the elements actually belong to the
# original set.
foreach ele $res {
assert {[info exists myset($ele)]}
}
# 3) Check that eventually all the elements are returned.
unset -nocomplain auxset
set iterations 1000
while {$iterations != 0} {
incr iterations -1
set res [r srandmember myset -10]
foreach ele $res {
set auxset($ele) 1
}
if {[lsort [array names myset]] eq
[lsort [array names auxset]]} {
break;
}
}
assert {$iterations != 0}
# PATH 2: positive count (unique behavior) with requested size
# equal or greater than set size.
foreach size {50 100} {
set res [r srandmember myset $size]
assert_equal [llength $res] 50
assert_equal [lsort $res] [lsort [array names myset]]
}
# PATH 3: Ask almost as elements as there are in the set.
# In this case the implementation will duplicate the original
# set and will remove random elements up to the requested size.
#
# PATH 4: Ask a number of elements definitely smaller than
# the set size.
#
# We can test both the code paths just changing the size but
# using the same code.
foreach size {45 5} {
set res [r srandmember myset $size]
assert_equal [llength $res] $size
# 1) Check that all the elements actually belong to the
# original set.
foreach ele $res {
assert {[info exists myset($ele)]}
}
# 2) Check that eventually all the elements are returned.
unset -nocomplain auxset
set iterations 1000
while {$iterations != 0} {
incr iterations -1
set res [r srandmember myset -10]
foreach ele $res {
set auxset($ele) 1
}
if {[lsort [array names myset]] eq
[lsort [array names auxset]]} {
break;
}
}
assert {$iterations != 0}
}
}
}
proc setup_move {} {
r del myset3 myset4
create_set myset1 {1 a b}
create_set myset2 {2 3 4}
assert_encoding hashtable myset1
assert_encoding intset myset2
}
test "SMOVE basics - from regular set to intset" {
# move a non-integer element to an intset should convert encoding
setup_move
assert_equal 1 [r smove myset1 myset2 a]
assert_equal {1 b} [lsort [r smembers myset1]]
assert_equal {2 3 4 a} [lsort [r smembers myset2]]
assert_encoding hashtable myset2
# move an integer element should not convert the encoding
setup_move
assert_equal 1 [r smove myset1 myset2 1]
assert_equal {a b} [lsort [r smembers myset1]]
assert_equal {1 2 3 4} [lsort [r smembers myset2]]
assert_encoding intset myset2
}
test "SMOVE basics - from intset to regular set" {
setup_move
assert_equal 1 [r smove myset2 myset1 2]
assert_equal {1 2 a b} [lsort [r smembers myset1]]
assert_equal {3 4} [lsort [r smembers myset2]]
}
test "SMOVE non existing key" {
setup_move
assert_equal 0 [r smove myset1 myset2 foo]
assert_equal {1 a b} [lsort [r smembers myset1]]
assert_equal {2 3 4} [lsort [r smembers myset2]]
}
test "SMOVE non existing src set" {
setup_move
assert_equal 0 [r smove noset myset2 foo]
assert_equal {2 3 4} [lsort [r smembers myset2]]
}
test "SMOVE from regular set to non existing destination set" {
setup_move
assert_equal 1 [r smove myset1 myset3 a]
assert_equal {1 b} [lsort [r smembers myset1]]
assert_equal {a} [lsort [r smembers myset3]]
assert_encoding hashtable myset3
}
test "SMOVE from intset to non existing destination set" {
setup_move
assert_equal 1 [r smove myset2 myset3 2]
assert_equal {3 4} [lsort [r smembers myset2]]
assert_equal {2} [lsort [r smembers myset3]]
assert_encoding intset myset3
}
test "SMOVE wrong src key type" {
r set x 10
assert_error "WRONGTYPE*" {r smove x myset2 foo}
}
test "SMOVE wrong dst key type" {
r set x 10
assert_error "WRONGTYPE*" {r smove myset2 x foo}
}
test "SMOVE with identical source and destination" {
r del set
r sadd set a b c
r smove set set b
lsort [r smembers set]
} {a b c}
tags {slow} {
test {intsets implementation stress testing} {
for {set j 0} {$j < 20} {incr j} {
unset -nocomplain s
array set s {}
r del s
set len [randomInt 1024]
for {set i 0} {$i < $len} {incr i} {
randpath {
set data [randomInt 65536]
} {
set data [randomInt 4294967296]
} {
set data [randomInt 18446744073709551616]
}
set s($data) {}
r sadd s $data
}
assert_equal [lsort [r smembers s]] [lsort [array names s]]
set len [array size s]
for {set i 0} {$i < $len} {incr i} {
set e [r spop s]
if {![info exists s($e)]} {
puts "Can't find '$e' on local array"
puts "Local array: [lsort [r smembers s]]"
puts "Remote array: [lsort [array names s]]"
error "exception"
}
array unset s $e
}
assert_equal [r scard s] 0
assert_equal [array size s] 0
}
}
}
}
|