1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
#include "test/jemalloc_test.h"
#include "jemalloc/internal/fxp.h"
static double
fxp2double(fxp_t a) {
double intpart = (double)(a >> 16);
double fracpart = (double)(a & ((1U << 16) - 1)) / (1U << 16);
return intpart + fracpart;
}
/* Is a close to b? */
static bool
double_close(double a, double b) {
/*
* Our implementation doesn't try for precision. Correspondingly, don't
* enforce it too strenuously here; accept values that are close in
* either relative or absolute terms.
*/
return fabs(a - b) < 0.01 || fabs(a - b) / a < 0.01;
}
static bool
fxp_close(fxp_t a, fxp_t b) {
return double_close(fxp2double(a), fxp2double(b));
}
static fxp_t
xparse_fxp(const char *str) {
fxp_t result;
bool err = fxp_parse(&result, str, NULL);
assert_false(err, "Invalid fxp string: %s", str);
return result;
}
static void
expect_parse_accurate(const char *str, const char *parse_str) {
double true_val = strtod(str, NULL);
fxp_t fxp_val;
char *end;
bool err = fxp_parse(&fxp_val, parse_str, &end);
expect_false(err, "Unexpected parse failure");
expect_ptr_eq(parse_str + strlen(str), end,
"Didn't parse whole string");
expect_true(double_close(fxp2double(fxp_val), true_val),
"Misparsed %s", str);
}
static void
parse_valid_trial(const char *str) {
/* The value it parses should be correct. */
expect_parse_accurate(str, str);
char buf[100];
snprintf(buf, sizeof(buf), "%swith_some_trailing_text", str);
expect_parse_accurate(str, buf);
snprintf(buf, sizeof(buf), "%s with a space", str);
expect_parse_accurate(str, buf);
snprintf(buf, sizeof(buf), "%s,in_a_malloc_conf_string:1", str);
expect_parse_accurate(str, buf);
}
TEST_BEGIN(test_parse_valid) {
parse_valid_trial("0");
parse_valid_trial("1");
parse_valid_trial("2");
parse_valid_trial("100");
parse_valid_trial("345");
parse_valid_trial("00000000123");
parse_valid_trial("00000000987");
parse_valid_trial("0.0");
parse_valid_trial("0.00000000000456456456");
parse_valid_trial("100.00000000000456456456");
parse_valid_trial("123.1");
parse_valid_trial("123.01");
parse_valid_trial("123.001");
parse_valid_trial("123.0001");
parse_valid_trial("123.00001");
parse_valid_trial("123.000001");
parse_valid_trial("123.0000001");
parse_valid_trial(".0");
parse_valid_trial(".1");
parse_valid_trial(".01");
parse_valid_trial(".001");
parse_valid_trial(".0001");
parse_valid_trial(".00001");
parse_valid_trial(".000001");
parse_valid_trial(".1");
parse_valid_trial(".10");
parse_valid_trial(".100");
parse_valid_trial(".1000");
parse_valid_trial(".100000");
}
TEST_END
static void
expect_parse_failure(const char *str) {
fxp_t result = FXP_INIT_INT(333);
char *end = (void *)0x123;
bool err = fxp_parse(&result, str, &end);
expect_true(err, "Expected a parse error on: %s", str);
expect_ptr_eq((void *)0x123, end,
"Parse error shouldn't change results");
expect_u32_eq(result, FXP_INIT_INT(333),
"Parse error shouldn't change results");
}
TEST_BEGIN(test_parse_invalid) {
expect_parse_failure("123.");
expect_parse_failure("3.a");
expect_parse_failure(".a");
expect_parse_failure("a.1");
expect_parse_failure("a");
/* A valid string, but one that overflows. */
expect_parse_failure("123456789");
expect_parse_failure("0000000123456789");
expect_parse_failure("1000000");
}
TEST_END
static void
expect_init_percent(unsigned percent, const char *str) {
fxp_t result_init = FXP_INIT_PERCENT(percent);
fxp_t result_parse = xparse_fxp(str);
expect_u32_eq(result_init, result_parse,
"Expect representations of FXP_INIT_PERCENT(%u) and "
"fxp_parse(\"%s\") to be equal; got %x and %x",
percent, str, result_init, result_parse);
}
/*
* Every other test uses either parsing or FXP_INIT_INT; it gets tested in those
* ways. We need a one-off for the percent-based initialization, though.
*/
TEST_BEGIN(test_init_percent) {
expect_init_percent(100, "1");
expect_init_percent(75, ".75");
expect_init_percent(1, ".01");
expect_init_percent(50, ".5");
}
TEST_END
static void
expect_add(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_add(a, b), result),
"Expected %s + %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_add_simple) {
expect_add("0", "0", "0");
expect_add("0", "1", "1");
expect_add("1", "1", "2");
expect_add("1.5", "1.5", "3");
expect_add("0.1", "0.1", "0.2");
expect_add("123", "456", "579");
}
TEST_END
static void
expect_sub(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_sub(a, b), result),
"Expected %s - %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_sub_simple) {
expect_sub("0", "0", "0");
expect_sub("1", "0", "1");
expect_sub("1", "1", "0");
expect_sub("3.5", "1.5", "2");
expect_sub("0.3", "0.1", "0.2");
expect_sub("456", "123", "333");
}
TEST_END
static void
expect_mul(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_mul(a, b), result),
"Expected %s * %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_mul_simple) {
expect_mul("0", "0", "0");
expect_mul("1", "0", "0");
expect_mul("1", "1", "1");
expect_mul("1.5", "1.5", "2.25");
expect_mul("100.0", "10", "1000");
expect_mul(".1", "10", "1");
}
TEST_END
static void
expect_div(const char *astr, const char *bstr, const char* resultstr) {
fxp_t a = xparse_fxp(astr);
fxp_t b = xparse_fxp(bstr);
fxp_t result = xparse_fxp(resultstr);
expect_true(fxp_close(fxp_div(a, b), result),
"Expected %s / %s == %s", astr, bstr, resultstr);
}
TEST_BEGIN(test_div_simple) {
expect_div("1", "1", "1");
expect_div("0", "1", "0");
expect_div("2", "1", "2");
expect_div("3", "2", "1.5");
expect_div("3", "1.5", "2");
expect_div("10", ".1", "100");
expect_div("123", "456", ".2697368421");
}
TEST_END
static void
expect_round(const char *str, uint32_t rounded_down, uint32_t rounded_nearest) {
fxp_t fxp = xparse_fxp(str);
uint32_t fxp_rounded_down = fxp_round_down(fxp);
uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp);
expect_u32_eq(rounded_down, fxp_rounded_down,
"Mistake rounding %s down", str);
expect_u32_eq(rounded_nearest, fxp_rounded_nearest,
"Mistake rounding %s to nearest", str);
}
TEST_BEGIN(test_round_simple) {
expect_round("1.5", 1, 2);
expect_round("0", 0, 0);
expect_round("0.1", 0, 0);
expect_round("0.4", 0, 0);
expect_round("0.40000", 0, 0);
expect_round("0.5", 0, 1);
expect_round("0.6", 0, 1);
expect_round("123", 123, 123);
expect_round("123.4", 123, 123);
expect_round("123.5", 123, 124);
}
TEST_END
static void
expect_mul_frac(size_t a, const char *fracstr, size_t expected) {
fxp_t frac = xparse_fxp(fracstr);
size_t result = fxp_mul_frac(a, frac);
expect_true(double_close(expected, result),
"Expected %zu * %s == %zu (fracmul); got %zu", a, fracstr,
expected, result);
}
TEST_BEGIN(test_mul_frac_simple) {
expect_mul_frac(SIZE_MAX, "1.0", SIZE_MAX);
expect_mul_frac(SIZE_MAX, ".75", SIZE_MAX / 4 * 3);
expect_mul_frac(SIZE_MAX, ".5", SIZE_MAX / 2);
expect_mul_frac(SIZE_MAX, ".25", SIZE_MAX / 4);
expect_mul_frac(1U << 16, "1.0", 1U << 16);
expect_mul_frac(1U << 30, "0.5", 1U << 29);
expect_mul_frac(1U << 30, "0.25", 1U << 28);
expect_mul_frac(1U << 30, "0.125", 1U << 27);
expect_mul_frac((1U << 30) + 1, "0.125", 1U << 27);
expect_mul_frac(100, "0.25", 25);
expect_mul_frac(1000 * 1000, "0.001", 1000);
}
TEST_END
static void
expect_print(const char *str) {
fxp_t fxp = xparse_fxp(str);
char buf[FXP_BUF_SIZE];
fxp_print(fxp, buf);
expect_d_eq(0, strcmp(str, buf), "Couldn't round-trip print %s", str);
}
TEST_BEGIN(test_print_simple) {
expect_print("0.0");
expect_print("1.0");
expect_print("2.0");
expect_print("123.0");
/*
* We hit the possibility of roundoff errors whenever the fractional
* component isn't a round binary number; only check these here (we
* round-trip properly in the stress test).
*/
expect_print("1.5");
expect_print("3.375");
expect_print("0.25");
expect_print("0.125");
/* 1 / 2**14 */
expect_print("0.00006103515625");
}
TEST_END
TEST_BEGIN(test_stress) {
const char *numbers[] = {
"0.0", "0.1", "0.2", "0.3", "0.4",
"0.5", "0.6", "0.7", "0.8", "0.9",
"1.0", "1.1", "1.2", "1.3", "1.4",
"1.5", "1.6", "1.7", "1.8", "1.9",
"2.0", "2.1", "2.2", "2.3", "2.4",
"2.5", "2.6", "2.7", "2.8", "2.9",
"17.0", "17.1", "17.2", "17.3", "17.4",
"17.5", "17.6", "17.7", "17.8", "17.9",
"18.0", "18.1", "18.2", "18.3", "18.4",
"18.5", "18.6", "18.7", "18.8", "18.9",
"123.0", "123.1", "123.2", "123.3", "123.4",
"123.5", "123.6", "123.7", "123.8", "123.9",
"124.0", "124.1", "124.2", "124.3", "124.4",
"124.5", "124.6", "124.7", "124.8", "124.9",
"125.0", "125.1", "125.2", "125.3", "125.4",
"125.5", "125.6", "125.7", "125.8", "125.9"};
size_t numbers_len = sizeof(numbers)/sizeof(numbers[0]);
for (size_t i = 0; i < numbers_len; i++) {
fxp_t fxp_a = xparse_fxp(numbers[i]);
double double_a = strtod(numbers[i], NULL);
uint32_t fxp_rounded_down = fxp_round_down(fxp_a);
uint32_t fxp_rounded_nearest = fxp_round_nearest(fxp_a);
uint32_t double_rounded_down = (uint32_t)double_a;
uint32_t double_rounded_nearest = (uint32_t)round(double_a);
expect_u32_eq(double_rounded_down, fxp_rounded_down,
"Incorrectly rounded down %s", numbers[i]);
expect_u32_eq(double_rounded_nearest, fxp_rounded_nearest,
"Incorrectly rounded-to-nearest %s", numbers[i]);
for (size_t j = 0; j < numbers_len; j++) {
fxp_t fxp_b = xparse_fxp(numbers[j]);
double double_b = strtod(numbers[j], NULL);
fxp_t fxp_sum = fxp_add(fxp_a, fxp_b);
double double_sum = double_a + double_b;
expect_true(
double_close(fxp2double(fxp_sum), double_sum),
"Miscomputed %s + %s", numbers[i], numbers[j]);
if (double_a > double_b) {
fxp_t fxp_diff = fxp_sub(fxp_a, fxp_b);
double double_diff = double_a - double_b;
expect_true(
double_close(fxp2double(fxp_diff),
double_diff),
"Miscomputed %s - %s", numbers[i],
numbers[j]);
}
fxp_t fxp_prod = fxp_mul(fxp_a, fxp_b);
double double_prod = double_a * double_b;
expect_true(
double_close(fxp2double(fxp_prod), double_prod),
"Miscomputed %s * %s", numbers[i], numbers[j]);
if (double_b != 0.0) {
fxp_t fxp_quot = fxp_div(fxp_a, fxp_b);
double double_quot = double_a / double_b;
expect_true(
double_close(fxp2double(fxp_quot),
double_quot),
"Miscomputed %s / %s", numbers[i],
numbers[j]);
}
}
}
}
TEST_END
int
main(void) {
return test_no_reentrancy(
test_parse_valid,
test_parse_invalid,
test_init_percent,
test_add_simple,
test_sub_simple,
test_mul_simple,
test_div_simple,
test_round_simple,
test_mul_frac_simple,
test_print_simple,
test_stress);
}
|