File: vset.c

package info (click to toggle)
redis 5%3A8.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 22,304 kB
  • sloc: ansic: 216,903; tcl: 51,562; sh: 4,625; perl: 4,214; cpp: 3,568; python: 2,954; makefile: 2,055; ruby: 639; javascript: 30; csh: 7
file content (2062 lines) | stat: -rw-r--r-- 82,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
/* Redis implementation for vector sets. The data structure itself
 * is implemented in hnsw.c.
 *
 * Copyright (c) 2009-Present, Redis Ltd.
 * All rights reserved.
 *
 * Licensed under your choice of (a) the Redis Source Available License 2.0
 * (RSALv2); or (b) the Server Side Public License v1 (SSPLv1); or (c) the
 * GNU Affero General Public License v3 (AGPLv3).
 * Originally authored by: Salvatore Sanfilippo.
 *
 * ======================== Understand threading model =========================
 * This code implements threaded operarations for two of the commands:
 *
 * 1. VSIM, by default.
 * 2. VADD, if the CAS option is specified.
 *
 * Note that even if the second operation, VADD, is a write operation, only
 * the neighbors collection for the new node is performed in a thread: then,
 * the actual insert is performed in the reply callback VADD_CASReply(),
 * which is executed in the main thread.
 *
 * Threaded operations need us to protect various operations with mutexes,
 * even if a certain degree of protection is already provided by the HNSW
 * library. Here are a few very important things about this implementation
 * and the way locking is performed.
 *
 * 1. All the write operations are performed in the main Redis thread:
 *    this also include VADD_CASReply() callback, that is called by Redis
 *    internals only in the context of the main thread. However the HNSW
 *    library allows background threads in hnsw_search() (VSIM) to modify
 *    nodes metadata to speedup search (to understand if a node was already
 *    visited), but this only happens after acquiring a specific lock
 *    for a given "read slot".
 *
 * 2. We use a global lock for each Vector Set object, called "in_use". This
 *    lock is a read-write lock, and is acquired in read mode by all the
 *    threads that perform reads in the background. It is only acquired in
 *    write mode by vectorSetWaitAllBackgroundClients(): the function acquires
 *    the lock and immediately releases it, with the effect of waiting all the
 *    background threads still running from ending their execution.
 *
 *    Note that no thread can be spawned, since we only call
 *    vectorSetWaitAllBackgroundClients() from the main Redis thread, that
 *    is also the only thread spawning other threads.
 *
 *    vectorSetWaitAllBackgroundClients() is used in two ways:
 *    A) When we need to delete a vector set because of (DEL) or other
 *       operations destroying the object, we need to wait that all the
 *       background threads working with this object finished their work.
 *    B) When we modify the HNSW nodes bypassing the normal locking
 *       provided by the HNSW library. This only happens when we update
 *       an existing node attribute so far, in VSETATTR and when we call
 *       VADD to update a node with the SETATTR option.
 *
 *  3. Often during read operations performed by Redis commands in the
 *     main thread (VCARD, VEMB, VRANDMEMBER, ...) we don't acquire any
 *     lock at all. The commands run in the main Redis thread, we can only
 *     have, at the same time, background reads against the same data
 *     structure. Note that VSIM_thread() and VADD_thread() still modify the
 *     read slot metadata, that is node->visited_epoch[slot], but as long as
 *     our read commands running in the main thread don't need to use
 *     hnsw_search() or other HNSW functions using the visited epochs slots
 *     we are safe.
 *
 * 4. There is a race from the moment we create a thread, passing the
 *    vector set object, to the moment the thread can actually lock the
 *    result win the in_use_lock mutex: as the thread starts, in the meanwhile
 *    a DEL/expire could trigger and remove the object. For this reason
 *    we use an atomic counter that protects our object for this small
 *    time in vectorSetWaitAllBackgroundClients(). This prevents removal
 *    of objects that are about to be taken by threads.
 *
 *    Note that other competing solutions could be used to fix the problem
 *    but have their set of issues, however they are worth documenting here
 *    and evaluating in the future:
 *
 *      A. Using a conditional variable we could "wait" for the thread to
 *         acquire the lock. However this means waiting before returning
 *         to the event loop, and would make the command execution slower.
 *      B. We could use again an atomic variable, like we did, but this time
 *         as a refcount for the object, with a vsetAcquire() vsetRelease().
 *         In this case, the command could retain the object in the main thread
 *         before starting the thread, and the thread, after the work is done,
 *         could release it. This way sometimes the object would be freed by
 *         the thread, and it's while now can be safe to do the kind of resource
 *         deallocation that vectorSetReleaseObject() does, given that the
 *         Redis Modules API is not always thread safe this solution may not
 *         be future-proof. However there is to evaluate it better in the
 *         future.
 *      C. We could use the "B" solution but instead of freeing the object
 *         in the thread, in this specific case we could just put it into a
 *         list and defer it for later freeing (for instance in the reply
 *         callback), so that the object is always freed in the main thread.
 *         This would require a list of objects to free.
 *
 *    However the current solution only disadvantage is the potential busy
 *    loop, but this busy loop in practical terms will almost never do
 *    much: to trigger it, a number of circumnstances must happen: deleting
 *    Vector Set keys while using them, hitting the small window needed to
 *    start the thread and read-lock the mutex.
 */

#define _DEFAULT_SOURCE
#define _USE_MATH_DEFINES
#define _POSIX_C_SOURCE 200809L

#include "../../src/redismodule.h"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include <strings.h>
#include <stdint.h>
#include <math.h>
#include <pthread.h>
#include <stdatomic.h>
#include "hnsw.h"

// We inline directly the expression implementation here so that building
// the module is trivial.
#include "expr.c"

static RedisModuleType *VectorSetType;
static uint64_t VectorSetTypeNextId = 0;

// Default EF value if not specified during creation.
#define VSET_DEFAULT_C_EF 200

// Default EF value if not specified during search.
#define VSET_DEFAULT_SEARCH_EF 100

// Default num elements returned by VSIM.
#define VSET_DEFAULT_COUNT 10

/* ========================== Internal data structure  ====================== */

/* Our abstract data type needs a dual representation similar to Redis
 * sorted set: the proximity graph, and also a element -> graph-node map
 * that will allow us to perform deletions and other operations that have
 * as input the element itself. */
struct vsetObject {
    HNSW *hnsw;                 // Proximity graph.
    RedisModuleDict *dict;      // Element -> node mapping.
    float *proj_matrix;         // Random projection matrix, NULL if no projection
    uint32_t proj_input_size;     // Input dimension after projection.
                                  // Output dimension is implicit in
                                  // hnsw->vector_dim.
    pthread_rwlock_t in_use_lock; // Lock needed to destroy the object safely.
    uint64_t id;                // Unique ID used by threaded VADD to know the
                                // object is still the same.
    uint64_t numattribs;        // Number of nodes associated with an attribute.
    atomic_int thread_creation_pending; // Number of threads that are currently
                                        // pending to lock the object.
};

/* Each node has two associated values: the associated string (the item
 * in the set) and potentially a JSON string, that is, the attributes, used
 * for hybrid search with the VSIM FILTER option. */
struct vsetNodeVal {
    RedisModuleString *item;
    RedisModuleString *attrib;
};

/* Count the number of set bits in an integer (population count/Hamming weight).
 * This is a portable implementation that doesn't rely on compiler
 * extensions. */
static inline uint32_t bit_count(uint32_t n) {
    uint32_t count = 0;
    while (n) {
        count += n & 1;
        n >>= 1;
    }
    return count;
}

/* Create a Hadamard-based projection matrix for dimensionality reduction.
 * Uses {-1, +1} entries with a pattern based on bit operations.
 * The pattern is matrix[i][j] = (i & j) % 2 == 0 ? 1 : -1
 * Matrix is scaled by 1/sqrt(input_dim) for normalization.
 * Returns NULL on allocation failure.
 *
 * Note that compared to other approaches (random gaussian weights), what
 * we have here is deterministic, it means that our replicas will have
 * the same set of weights. Also this approach seems to work much better
 * in practice, and the distances between elements are better guaranteed.
 *
 * Note that we still save the projection matrix in the RDB file, because
 * in the future we may change the weights generation, and we want everything
 * to be backward compatible. */
float *createProjectionMatrix(uint32_t input_dim, uint32_t output_dim) {
    float *matrix = RedisModule_Alloc(sizeof(float) * input_dim * output_dim);

    /* Scale factor to normalize the projection. */
    const float scale = 1.0f / sqrt(input_dim);

    /* Fill the matrix using Hadamard pattern. */
    for (uint32_t i = 0; i < output_dim; i++) {
        for (uint32_t j = 0; j < input_dim; j++) {
            /* Calculate position in the flattened matrix. */
            uint32_t pos = i * input_dim + j;

            /* Hadamard pattern: use bit operations to determine sign
             * If the count of 1-bits in the bitwise AND of i and j is even,
             * the value is 1, otherwise -1. */
            int value = (bit_count(i & j) % 2 == 0) ? 1 : -1;

            /* Store the scaled value. */
            matrix[pos] = value * scale;
        }
    }
    return matrix;
}

/* Apply random projection to input vector. Returns new allocated vector. */
float *applyProjection(const float *input, const float *proj_matrix,
                      uint32_t input_dim, uint32_t output_dim)
{
    float *output = RedisModule_Alloc(sizeof(float) * output_dim);

    for (uint32_t i = 0; i < output_dim; i++) {
        const float *row = &proj_matrix[i * input_dim];
        float sum = 0.0f;
        for (uint32_t j = 0; j < input_dim; j++) {
            sum += row[j] * input[j];
        }
        output[i] = sum;
    }
    return output;
}

/* Create the vector as HNSW+Dictionary combined data structure. */
struct vsetObject *createVectorSetObject(unsigned int dim, uint32_t quant_type, uint32_t hnsw_M) {
    struct vsetObject *o;
    o = RedisModule_Alloc(sizeof(*o));

    o->id = VectorSetTypeNextId++;
    o->hnsw = hnsw_new(dim,quant_type,hnsw_M);
    if (!o->hnsw) { // May fail because of mutex creation.
        RedisModule_Free(o);
        return NULL;
    }

    o->dict = RedisModule_CreateDict(NULL);
    o->proj_matrix = NULL;
    o->proj_input_size = 0;
    o->numattribs = 0;
    o->thread_creation_pending = 0;
    RedisModule_Assert(pthread_rwlock_init(&o->in_use_lock,NULL) == 0);
    return o;
}

void vectorSetReleaseNodeValue(void *v) {
    struct vsetNodeVal *nv = v;
    RedisModule_FreeString(NULL,nv->item);
    if (nv->attrib) RedisModule_FreeString(NULL,nv->attrib);
    RedisModule_Free(nv);
}

/* Free the vector set object. */
void vectorSetReleaseObject(struct vsetObject *o) {
    if (!o) return;
    if (o->hnsw) hnsw_free(o->hnsw,vectorSetReleaseNodeValue);
    if (o->dict) RedisModule_FreeDict(NULL,o->dict);
    if (o->proj_matrix) RedisModule_Free(o->proj_matrix);
    pthread_rwlock_destroy(&o->in_use_lock);
    RedisModule_Free(o);
}

/* Wait for all the threads performing operations on this
 * index to terminate their work (locking for write will
 * wait for all the other threads).
 *
 * if 'for_del' is set to 1, we also wait for all the pending threads
 * that still didn't acquire the lock to finish their work. This
 * is useful only if we are going to call this function to delete
 * the object, and not if we want to just to modify it. */
void vectorSetWaitAllBackgroundClients(struct vsetObject *vset, int for_del) {
    if (for_del) {
        // If we are going to destroy the object, after this call, let's
        // wait for threads that are being created and still didn't had
        // a chance to acquire the lock.
        while (vset->thread_creation_pending > 0);
    }
    RedisModule_Assert(pthread_rwlock_wrlock(&vset->in_use_lock) == 0);
    pthread_rwlock_unlock(&vset->in_use_lock);
}

/* Return a string representing the quantization type name of a vector set. */
const char *vectorSetGetQuantName(struct vsetObject *o) {
    switch(o->hnsw->quant_type) {
    case HNSW_QUANT_NONE: return "f32";
    case HNSW_QUANT_Q8: return "int8";
    case HNSW_QUANT_BIN: return "bin";
    default: return "unknown";
    }
}

/* Insert the specified element into the Vector Set.
 * If update is '1', the existing node will be updated.
 *
 * Returns 1 if the element was added, or 0 if the element was already there
 * and was just updated. */
int vectorSetInsert(struct vsetObject *o, float *vec, int8_t *qvec, float qrange, RedisModuleString *val, RedisModuleString *attrib, int update, int ef)
{
    hnswNode *node = RedisModule_DictGet(o->dict,val,NULL);
    if (node != NULL) {
        if (update) {
            /* Wait for clients in the background: background VSIM
             * operations touch the nodes attributes we are going
             * to touch. */
            vectorSetWaitAllBackgroundClients(o,0);

            struct vsetNodeVal *nv = node->value;
            /* Pass NULL as value-free function. We want to reuse
             * the old value. */
            hnsw_delete_node(o->hnsw, node, NULL);
            node = hnsw_insert(o->hnsw,vec,qvec,qrange,0,nv,ef);
            RedisModule_Assert(node != NULL);
            RedisModule_DictReplace(o->dict,val,node);

            /* If attrib != NULL, the user wants that in case of an update we
             * update the attribute as well (otherwise it remains as it was).
             * Note that the order of operations is conceinved so that it
             * works in case the old attrib and the new attrib pointer is the
             * same. */
            if (attrib) {
                // Empty attribute string means: unset the attribute during
                // the update.
                size_t attrlen;
                RedisModule_StringPtrLen(attrib,&attrlen);
                if (attrlen != 0) {
                    RedisModule_RetainString(NULL,attrib);
                    o->numattribs++;
                } else {
                    attrib = NULL;
                }

                if (nv->attrib) {
                    o->numattribs--;
                    RedisModule_FreeString(NULL,nv->attrib);
                }
                nv->attrib = attrib;
            }
        }
        return 0;
    }

    struct vsetNodeVal *nv = RedisModule_Alloc(sizeof(*nv));
    nv->item = val;
    nv->attrib = attrib;
    node = hnsw_insert(o->hnsw,vec,qvec,qrange,0,nv,ef);
    if (node == NULL) {
        // XXX Technically in Redis-land we don't have out of memory, as we
        // crash on OOM. However the HNSW library may fail for error in the
        // locking libc call. Probably impossible in practical terms.
        RedisModule_Free(nv);
        return 0;
    }
    if (attrib != NULL) o->numattribs++;
    RedisModule_DictSet(o->dict,val,node);
    RedisModule_RetainString(NULL,val);
    if (attrib) RedisModule_RetainString(NULL,attrib);
    return 1;
}

/* Parse vector from FP32 blob or VALUES format, with optional REDUCE.
 * Format: [REDUCE dim] FP32|VALUES ...
 * Returns allocated vector and sets dimension in *dim.
 * If reduce_dim is not NULL, sets it to the requested reduction dimension.
 * Returns NULL on parsing error.
 *
 * The function sets as a reference *consumed_args, so that the caller
 * knows how many arguments we consumed in order to parse the input
 * vector. Remaining arguments are often command options. */
float *parseVector(RedisModuleString **argv, int argc, int start_idx,
                  size_t *dim, uint32_t *reduce_dim, int *consumed_args)
{
    int consumed = 0; // Arguments consumed

    /* Check for REDUCE option first. */
    if (reduce_dim) *reduce_dim = 0;
    if (reduce_dim && argc > start_idx + 2 &&
        !strcasecmp(RedisModule_StringPtrLen(argv[start_idx],NULL),"REDUCE"))
    {
        long long rdim;
        if (RedisModule_StringToLongLong(argv[start_idx+1],&rdim)
            != REDISMODULE_OK || rdim <= 0)
        {
            return NULL;
        }
        if (reduce_dim) *reduce_dim = rdim;
        start_idx += 2;  // Skip REDUCE and its argument.
        consumed += 2;
    }

    /* Now parse the vector format as before. */
    float *vec = NULL;
    const char *vec_format = RedisModule_StringPtrLen(argv[start_idx],NULL);

    if (!strcasecmp(vec_format,"FP32")) {
        if (argc < start_idx + 2) return NULL;  // Need FP32 + vector + value.
        size_t vec_raw_len;
        const char *blob =
            RedisModule_StringPtrLen(argv[start_idx+1],&vec_raw_len);

        // Must be 4 bytes per component.
        if (vec_raw_len % 4 || vec_raw_len < 4) return NULL;
        *dim = vec_raw_len/4;

        vec = RedisModule_Alloc(vec_raw_len);
        if (!vec) return NULL;
        memcpy(vec,blob,vec_raw_len);
        consumed += 2;
    } else if (!strcasecmp(vec_format,"VALUES")) {
        if (argc < start_idx + 2) return NULL;  // Need at least the dimension.
        long long vdim; // Vector dimension passed by the user.
        if (RedisModule_StringToLongLong(argv[start_idx+1],&vdim)
            != REDISMODULE_OK || vdim < 1) return NULL;

        // Check that all the arguments are available.
        if (argc < start_idx + 2 + vdim) return NULL;

        *dim = vdim;
        vec = RedisModule_Alloc(sizeof(float) * vdim);
        if (!vec) return NULL;

        for (int j = 0; j < vdim; j++) {
            double val;
            if (RedisModule_StringToDouble(argv[start_idx+2+j],&val)
                != REDISMODULE_OK)
            {
                RedisModule_Free(vec);
                return NULL;
            }
            vec[j] = val;
        }
        consumed += vdim + 2;
    } else {
        return NULL;  // Unknown format.
    }

    if (consumed_args) *consumed_args = consumed;
    return vec;
}

/* ========================== Commands implementation ======================= */

/* VADD thread handling the "CAS" version of the command, that is
 * performed blocking the client, accumulating here, in the thread, the
 * set of potential candidates, and later inserting the element in the
 * key (if it still exists, and if it is still the *same* vector set)
 * in the Reply callback. */
void *VADD_thread(void *arg) {
    pthread_detach(pthread_self());

    void **targ = (void**)arg;
    RedisModuleBlockedClient *bc = targ[0];
    struct vsetObject *vset = targ[1];
    float *vec = targ[3];
    int ef = (uint64_t)targ[6];

    /* Lock the object and signal that we are no longer pending
     * the lock acquisition. */
    RedisModule_Assert(pthread_rwlock_rdlock(&vset->in_use_lock) == 0);
    vset->thread_creation_pending--;

    /* Look for candidates... */
    InsertContext *ic = hnsw_prepare_insert(vset->hnsw, vec, NULL, 0, 0, ef);
    targ[5] = ic; // Pass the context to the reply callback.

    /* Unblock the client so that our read reply will be invoked. */
    pthread_rwlock_unlock(&vset->in_use_lock);
    RedisModule_BlockedClientMeasureTimeEnd(bc);
    RedisModule_UnblockClient(bc,targ); // Use targ as privdata.
    return NULL;
}

/* Reply callback for CAS variant of VADD.
 * Note: this is called in the main thread, in the background thread
 * we just do the read operation of gathering the neighbors. */
int VADD_CASReply(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    (void)argc;
    RedisModule_AutoMemory(ctx); /* Use automatic memory management. */

    int retval = REDISMODULE_OK;
    void **targ = (void**)RedisModule_GetBlockedClientPrivateData(ctx);
    uint64_t vset_id = (unsigned long) targ[2];
    float *vec = targ[3];
    RedisModuleString *val = targ[4];
    InsertContext *ic = targ[5];
    int ef = (uint64_t)targ[6];
    RedisModuleString *attrib = targ[7];
    RedisModule_Free(targ);

    /* Open the key: there are no guarantees it still exists, or contains
     * a vector set, or even the SAME vector set. */
    RedisModuleKey *key = RedisModule_OpenKey(ctx,argv[1],
        REDISMODULE_READ|REDISMODULE_WRITE);
    int type = RedisModule_KeyType(key);
    struct vsetObject *vset = NULL;

    if (type != REDISMODULE_KEYTYPE_EMPTY &&
        RedisModule_ModuleTypeGetType(key) == VectorSetType)
    {
        vset = RedisModule_ModuleTypeGetValue(key);
        // Same vector set?
        if (vset->id != vset_id) vset = NULL;

        /* Also, if the element was already inserted, we just pretend
         * the other insert won. We don't even start a threaded VADD
         * if this was an update, since the deletion of the element itself
         * in order to perform the update would invalidate the CAS state. */
        if (vset && RedisModule_DictGet(vset->dict,val,NULL) != NULL)
            vset = NULL;
    }

    if (vset == NULL) {
        /* If the object does not match the start of the operation, we
         * just pretend the VADD was performed BEFORE the key was deleted
         * or replaced. We return success but don't do anything. */
        hnsw_free_insert_context(ic);
    } else {
        /* Otherwise try to insert the new element with the neighbors
         * collected in background. If we fail, do it synchronously again
         * from scratch. */

        // First: allocate the dual-ported value for the node.
        struct vsetNodeVal *nv = RedisModule_Alloc(sizeof(*nv));
        nv->item = val;
        nv->attrib = attrib;

        /* Then: insert the node in the HNSW data structure. Note that
         * 'ic' could be NULL in case hnsw_prepare_insert() failed because of
         * locking failure (likely impossible in practical terms). */
        hnswNode *newnode;
        if (ic == NULL ||
            (newnode = hnsw_try_commit_insert(vset->hnsw, ic, nv)) == NULL)
        {
            /* If we are here, the CAS insert failed. We need to insert
             * again with full locking for neighbors selection and
             * actual insertion. This time we can't fail: */
            newnode = hnsw_insert(vset->hnsw, vec, NULL, 0, 0, nv, ef);
            RedisModule_Assert(newnode != NULL);
        }
        RedisModule_DictSet(vset->dict,val,newnode);
        val = NULL; // Don't free it later.
        attrib = NULL; // Don't free it later.

        RedisModule_ReplicateVerbatim(ctx);
    }

    // Whatever happens is a success... :D
    RedisModule_ReplyWithBool(ctx,1);
    if (val) RedisModule_FreeString(ctx,val); // Not added? Free it.
    if (attrib) RedisModule_FreeString(ctx,attrib); // Not added? Free it.
    RedisModule_Free(vec);
    return retval;
}

/* VADD key [REDUCE dim] FP32|VALUES vector value [CAS] [NOQUANT] [BIN] [Q8]
 *      [M count] */
int VADD_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx); /* Use automatic memory management. */

    if (argc < 5) return RedisModule_WrongArity(ctx);

    /* Parse vector with optional REDUCE */
    size_t dim = 0;
    uint32_t reduce_dim = 0;
    int consumed_args;
    int cas = 0; // Threaded check-and-set style insert.
    long long ef = VSET_DEFAULT_C_EF; // HNSW creation time EF for new nodes.
    long long hnsw_create_M = HNSW_DEFAULT_M; // HNSW creation default M value.
    float *vec = parseVector(argv, argc, 2, &dim, &reduce_dim, &consumed_args);
    RedisModuleString *attrib = NULL; // Attributes if passed via ATTRIB.
    if (!vec)
        return RedisModule_ReplyWithError(ctx,"ERR invalid vector specification");

    /* Missing element string at the end? */
    if (argc-2-consumed_args < 1) {
        RedisModule_Free(vec);
        return RedisModule_WrongArity(ctx);
    }

    /* Parse options after the element string. */
    uint32_t quant_type = HNSW_QUANT_Q8; // Default quantization type.

    for (int j = 2 + consumed_args + 1; j < argc; j++) {
        const char *opt = RedisModule_StringPtrLen(argv[j], NULL);
        if (!strcasecmp(opt, "CAS")) {
            cas = 1;
        } else if (!strcasecmp(opt, "EF") && j+1 < argc) {
            if (RedisModule_StringToLongLong(argv[j+1], &ef)
                != REDISMODULE_OK || ef <= 0 || ef > 1000000)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid EF");
            }
            j++; // skip argument.
        } else if (!strcasecmp(opt, "M") && j+1 < argc) {
            if (RedisModule_StringToLongLong(argv[j+1], &hnsw_create_M)
                != REDISMODULE_OK || hnsw_create_M < HNSW_MIN_M ||
                hnsw_create_M > HNSW_MAX_M)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid M");
            }
            j++; // skip argument.
        } else if (!strcasecmp(opt, "SETATTR") && j+1 < argc) {
            attrib = argv[j+1];
            j++; // skip argument.
        } else if (!strcasecmp(opt, "NOQUANT")) {
            quant_type = HNSW_QUANT_NONE;
        } else if (!strcasecmp(opt, "BIN")) {
            quant_type = HNSW_QUANT_BIN;
        } else if (!strcasecmp(opt, "Q8")) {
            quant_type = HNSW_QUANT_Q8;
        } else {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,"ERR invalid option after element");
        }
    }

    /* Drop CAS if this is a replica and we are getting the command from the
     * replication link: we want to add/delete items in the same order as
     * the master, while with CAS the timing would be different.
     *
     * Also for Lua scripts and MULTI/EXEC, we want to run the command
     * on the main thread. */
    if (RedisModule_GetContextFlags(ctx) &
            (REDISMODULE_CTX_FLAGS_REPLICATED|
             REDISMODULE_CTX_FLAGS_LUA|
             REDISMODULE_CTX_FLAGS_MULTI))
    {
        cas = 0;
    }

    /* Open/create key */
    RedisModuleKey *key = RedisModule_OpenKey(ctx,argv[1],
        REDISMODULE_READ|REDISMODULE_WRITE);
    int type = RedisModule_KeyType(key);
    if (type != REDISMODULE_KEYTYPE_EMPTY &&
        RedisModule_ModuleTypeGetType(key) != VectorSetType)
    {
        RedisModule_Free(vec);
        return RedisModule_ReplyWithError(ctx,REDISMODULE_ERRORMSG_WRONGTYPE);
    }

    /* Get the correct value argument based on format and REDUCE */
    RedisModuleString *val = argv[2 + consumed_args];

    /* Create or get existing vector set */
    struct vsetObject *vset;
    if (type == REDISMODULE_KEYTYPE_EMPTY) {
        cas = 0; /* Do synchronous insert at creation, otherwise the
                  * key would be left empty until the threaded part
                  * does not return. It's also pointless to try try
                  * doing threaded first element insertion. */
        vset = createVectorSetObject(reduce_dim ? reduce_dim : dim, quant_type, hnsw_create_M);
        if (vset == NULL) {
            // We can't fail for OOM in Redis, but the mutex initialization
            // at least theoretically COULD fail. Likely this code path
            // is not reachable in practical terms.
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,
                "ERR unable to create a Vector Set: system resources issue?");
        }

        /* Initialize projection if requested */
        if (reduce_dim) {
            vset->proj_matrix = createProjectionMatrix(dim, reduce_dim);
            vset->proj_input_size = dim;

            /* Project the vector */
            float *projected = applyProjection(vec, vset->proj_matrix,
                                            dim, reduce_dim);
            RedisModule_Free(vec);
            vec = projected;
        }
        RedisModule_ModuleTypeSetValue(key,VectorSetType,vset);
    } else {
        vset = RedisModule_ModuleTypeGetValue(key);

        if (vset->hnsw->quant_type != quant_type) {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,
                "ERR asked quantization mismatch with existing vector set");
        }

        if (vset->hnsw->M != hnsw_create_M) {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,
                "ERR asked M value mismatch with existing vector set");
        }

        if ((vset->proj_matrix == NULL && vset->hnsw->vector_dim != dim) ||
            (vset->proj_matrix && vset->hnsw->vector_dim != reduce_dim))
        {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithErrorFormat(ctx,
                "ERR Vector dimension mismatch - got %d but set has %d",
                (int)dim, (int)vset->hnsw->vector_dim);
        }

        /* Check REDUCE compatibility */
        if (reduce_dim) {
            if (!vset->proj_matrix) {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx,
                    "ERR cannot add projection to existing set without projection");
            }
            if (reduce_dim != vset->hnsw->vector_dim) {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx,
                    "ERR projection dimension mismatch with existing set");
            }
        }

        /* Apply projection if needed */
        if (vset->proj_matrix) {
            /* Ensure input dimension matches the projection matrix's expected input dimension */
            if (dim != vset->proj_input_size) {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithErrorFormat(ctx,
                    "ERR Input dimension mismatch for projection - got %d but projection expects %d",
                    (int)dim, (int)vset->proj_input_size);
            }

            float *projected = applyProjection(vec, vset->proj_matrix,
                                             vset->proj_input_size,
                                             vset->hnsw->vector_dim);
            RedisModule_Free(vec);
            vec = projected;
            dim = vset->hnsw->vector_dim;
        }
    }

    /* For existing keys don't do CAS updates. For how things work now, the
     * CAS state would be invalidated by the deletion before adding back. */
    if (cas && RedisModule_DictGet(vset->dict,val,NULL) != NULL)
        cas = 0;

    /* Here depending on the CAS option we directly insert in a blocking
     * way, or use a thread to do candidate neighbors selection and only
     * later, in the reply callback, actually add the element. */
    if (cas) {
        RedisModuleBlockedClient *bc = RedisModule_BlockClient(ctx,VADD_CASReply,NULL,NULL,0);
        pthread_t tid;
        void **targ = RedisModule_Alloc(sizeof(void*)*8);
        targ[0] = bc;
        targ[1] = vset;
        targ[2] = (void*)(unsigned long)vset->id;
        targ[3] = vec;
        targ[4] = val;
        targ[5] = NULL; // Used later for insertion context.
        targ[6] = (void*)(unsigned long)ef;
        targ[7] = attrib;
        RedisModule_RetainString(ctx,val);
        if (attrib) RedisModule_RetainString(ctx,attrib);
        RedisModule_BlockedClientMeasureTimeStart(bc);
        vset->thread_creation_pending++;
        if (pthread_create(&tid,NULL,VADD_thread,targ) != 0) {
            vset->thread_creation_pending--;
            RedisModule_AbortBlock(bc);
            RedisModule_Free(targ);
            RedisModule_FreeString(ctx,val);
            if (attrib) RedisModule_FreeString(ctx,attrib);

            // Fall back to synchronous insert, see later in the code.
        } else {
            return REDISMODULE_OK;
        }
    }

    /* Insert vector synchronously: we reach this place even
     * if cas was true but thread creation failed. */
    int added = vectorSetInsert(vset,vec,NULL,0,val,attrib,1,ef);
    RedisModule_Free(vec);

    RedisModule_ReplyWithBool(ctx,added);
    if (added) RedisModule_ReplicateVerbatim(ctx);
    return REDISMODULE_OK;
}

/* HNSW callback to filter items according to a predicate function
 * (our FILTER expression in this case). */
int vectorSetFilterCallback(void *value, void *privdata) {
    exprstate *expr = privdata;
    struct vsetNodeVal *nv = value;
    if (nv->attrib == NULL) return 0; // No attributes? No match.
    size_t json_len;
    char *json = (char*)RedisModule_StringPtrLen(nv->attrib,&json_len);
    return exprRun(expr,json,json_len);
}

/* Common path for the execution of the VSIM command both threaded and
 * not threaded. Note that 'ctx' may be normal context of a thread safe
 * context obtained from a blocked client. The locking that is specific
 * to the vset object is handled by the caller, however the function
 * handles the HNSW locking explicitly. */
void VSIM_execute(RedisModuleCtx *ctx, struct vsetObject *vset,
    float *vec, unsigned long count, float epsilon, unsigned long withscores,
    unsigned long ef, exprstate *filter_expr, unsigned long filter_ef,
    int ground_truth)
{
    /* In our scan, we can't just collect 'count' elements as
     * if count is small we would explore the graph in an insufficient
     * way to provide enough recall.
     *
     * If the user didn't asked for a specific exploration, we use
     * VSET_DEFAULT_SEARCH_EF as minimum, or we match count if count
     * is greater than that. Otherwise the minumim will be the specified
     * EF argument. */
    if (ef == 0) ef = VSET_DEFAULT_SEARCH_EF;
    if (count > ef) ef = count;

    /* Perform search */
    hnswNode **neighbors = RedisModule_Alloc(sizeof(hnswNode*)*ef);
    float *distances = RedisModule_Alloc(sizeof(float)*ef);
    int slot = hnsw_acquire_read_slot(vset->hnsw);
    unsigned int found;
    if (ground_truth) {
        found = hnsw_ground_truth_with_filter(vset->hnsw, vec, ef, neighbors,
                    distances, slot, 0,
                    filter_expr ? vectorSetFilterCallback : NULL,
                    filter_expr);
    } else {
        if (filter_expr == NULL) {
            found = hnsw_search(vset->hnsw, vec, ef, neighbors,
                                distances, slot, 0);
        } else {
            found = hnsw_search_with_filter(vset->hnsw, vec, ef, neighbors,
                        distances, slot, 0, vectorSetFilterCallback,
                        filter_expr, filter_ef);
        }
    }

    /* Return results */
    if (withscores)
        RedisModule_ReplyWithMap(ctx, REDISMODULE_POSTPONED_LEN);
    else
        RedisModule_ReplyWithArray(ctx, REDISMODULE_POSTPONED_LEN);
    long long arraylen = 0;

    for (unsigned int i = 0; i < found && i < count; i++) {
        if (distances[i] > epsilon) break;
        struct vsetNodeVal *nv = neighbors[i]->value;
        RedisModule_ReplyWithString(ctx, nv->item);
        arraylen++;
        if (withscores) {
            /* The similarity score is provided in a 0-1 range. */
            RedisModule_ReplyWithDouble(ctx, 1.0 - distances[i]/2.0);
        }
    }
    hnsw_release_read_slot(vset->hnsw,slot);

    if (withscores)
        RedisModule_ReplySetMapLength(ctx, arraylen);
    else
        RedisModule_ReplySetArrayLength(ctx, arraylen);

    RedisModule_Free(vec);
    RedisModule_Free(neighbors);
    RedisModule_Free(distances);
    if (filter_expr) exprFree(filter_expr);
}

/* VSIM thread handling the blocked client request. */
void *VSIM_thread(void *arg) {
    pthread_detach(pthread_self());

    // Extract arguments.
    void **targ = (void**)arg;
    RedisModuleBlockedClient *bc = targ[0];
    struct vsetObject *vset = targ[1];
    float *vec = targ[2];
    unsigned long count = (unsigned long)targ[3];
    float epsilon = *((float*)targ[4]);
    unsigned long withscores = (unsigned long)targ[5];
    unsigned long ef = (unsigned long)targ[6];
    exprstate *filter_expr = targ[7];
    unsigned long filter_ef = (unsigned long)targ[8];
    unsigned long ground_truth = (unsigned long)targ[9];
    RedisModule_Free(targ[4]);
    RedisModule_Free(targ);

    /* Lock the object and signal that we are no longer pending
     * the lock acquisition. */
    RedisModule_Assert(pthread_rwlock_rdlock(&vset->in_use_lock) == 0);
    vset->thread_creation_pending--;

    // Accumulate reply in a thread safe context: no contention.
    RedisModuleCtx *ctx = RedisModule_GetThreadSafeContext(bc);

    // Run the query.
    VSIM_execute(ctx, vset, vec, count, epsilon, withscores, ef, filter_expr, filter_ef, ground_truth);
    pthread_rwlock_unlock(&vset->in_use_lock);

    // Cleanup.
    RedisModule_FreeThreadSafeContext(ctx);
    RedisModule_BlockedClientMeasureTimeEnd(bc);
    RedisModule_UnblockClient(bc,NULL);
    return NULL;
}

/* VSIM key [ELE|FP32|VALUES] <vector or ele> [WITHSCORES] [COUNT num] [EPSILON eps] [EF exploration-factor] [FILTER expression] [FILTER-EF exploration-factor] */
int VSIM_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    /* Basic argument check: need at least key and vector specification
     * method. */
    if (argc < 4) return RedisModule_WrongArity(ctx);

    /* Defaults */
    int withscores = 0;
    long long count = VSET_DEFAULT_COUNT;   /* New default value */
    long long ef = 0;       /* Exploration factor (see HNSW paper) */
    double epsilon = 2.0;   /* Max cosine distance */
    long long ground_truth = 0; /* Linear scan instead of HNSW search? */
    int no_thread = 0;       /* NOTHREAD option: exec on main thread. */

    /* Things computed later. */
    long long filter_ef = 0;
    exprstate *filter_expr = NULL;

    /* Get key and vector type */
    RedisModuleString *key = argv[1];
    const char *vectorType = RedisModule_StringPtrLen(argv[2], NULL);

    /* Get vector set */
    RedisModuleKey *keyptr = RedisModule_OpenKey(ctx, key, REDISMODULE_READ);
    int type = RedisModule_KeyType(keyptr);
    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithEmptyArray(ctx);

    if (RedisModule_ModuleTypeGetType(keyptr) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(keyptr);

    /* Vector parsing stage */
    float *vec = NULL;
    size_t dim = 0;
    int vector_args = 0;  /* Number of args consumed by vector specification */

    if (!strcasecmp(vectorType, "ELE")) {
        /* Get vector from existing element */
        RedisModuleString *ele = argv[3];
        hnswNode *node = RedisModule_DictGet(vset->dict, ele, NULL);
        if (!node) {
            return RedisModule_ReplyWithError(ctx, "ERR element not found in set");
        }
        vec = RedisModule_Alloc(sizeof(float) * vset->hnsw->vector_dim);
        hnsw_get_node_vector(vset->hnsw,node,vec);
        dim = vset->hnsw->vector_dim;
        vector_args = 2;  /* ELE + element name */
    } else {
        /* Parse vector. */
        int consumed_args;

        vec = parseVector(argv, argc, 2, &dim, NULL, &consumed_args);
        if (!vec) {
            return RedisModule_ReplyWithError(ctx,
                "ERR invalid vector specification");
        }
        vector_args = consumed_args;

        /* Apply projection if the set uses it, with the exception
         * of ELE type, that will already have the right dimension. */
        if (vset->proj_matrix && dim != vset->hnsw->vector_dim) {
            /* Ensure input dimension matches the projection matrix's expected input dimension */
            if (dim != vset->proj_input_size) {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithErrorFormat(ctx,
                    "ERR Input dimension mismatch for projection - got %d but projection expects %d",
                    (int)dim, (int)vset->proj_input_size);
            }

            float *projected = applyProjection(vec, vset->proj_matrix,
                                             vset->proj_input_size,
                                             vset->hnsw->vector_dim);
            RedisModule_Free(vec);
            vec = projected;
            dim = vset->hnsw->vector_dim;
        }

        /* Count consumed arguments */
        if (!strcasecmp(vectorType, "FP32")) {
            vector_args = 2;  /* FP32 + vector blob */
        } else if (!strcasecmp(vectorType, "VALUES")) {
            long long vdim;
            if (RedisModule_StringToLongLong(argv[3], &vdim) != REDISMODULE_OK) {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid vector dimension");
            }
            vector_args = 2 + vdim;  /* VALUES + dim + values */
        } else {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,
                "ERR vector type must be ELE, FP32 or VALUES");
        }
    }

    /* Check vector dimension matches set */
    if (dim != vset->hnsw->vector_dim) {
        RedisModule_Free(vec);
        return RedisModule_ReplyWithErrorFormat(ctx,
            "ERR Vector dimension mismatch - got %d but set has %d",
            (int)dim, (int)vset->hnsw->vector_dim);
    }

    /* Parse optional arguments - start after vector specification */
    int j = 2 + vector_args;
    while (j < argc) {
        const char *opt = RedisModule_StringPtrLen(argv[j], NULL);
        if (!strcasecmp(opt, "WITHSCORES")) {
            withscores = 1;
            j++;
        } else if (!strcasecmp(opt, "TRUTH")) {
            ground_truth = 1;
            j++;
        } else if (!strcasecmp(opt, "NOTHREAD")) {
            no_thread = 1;
            j++;
        } else if (!strcasecmp(opt, "COUNT") && j+1 < argc) {
            if (RedisModule_StringToLongLong(argv[j+1], &count)
                != REDISMODULE_OK || count <= 0)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid COUNT");
            }
            j += 2;
        } else if (!strcasecmp(opt, "EPSILON") && j+1 < argc) {
            if (RedisModule_StringToDouble(argv[j+1], &epsilon) !=
                REDISMODULE_OK || epsilon <= 0)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid EPSILON");
            }
            j += 2;
        } else if (!strcasecmp(opt, "EF") && j+1 < argc) {
            if (RedisModule_StringToLongLong(argv[j+1], &ef) !=
                REDISMODULE_OK || ef <= 0)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid EF");
            }
            j += 2;
        } else if (!strcasecmp(opt, "FILTER-EF") && j+1 < argc) {
            if (RedisModule_StringToLongLong(argv[j+1], &filter_ef) !=
                REDISMODULE_OK || filter_ef <= 0)
            {
                RedisModule_Free(vec);
                return RedisModule_ReplyWithError(ctx, "ERR invalid FILTER-EF");
            }
            j += 2;
        } else if (!strcasecmp(opt, "FILTER") && j+1 < argc) {
            RedisModuleString *exprarg = argv[j+1];
            size_t exprlen;
            char *exprstr = (char*)RedisModule_StringPtrLen(exprarg,&exprlen);
            int errpos;
            filter_expr = exprCompile(exprstr,&errpos);
            if (filter_expr == NULL) {
                if ((size_t)errpos >= exprlen) errpos = 0;
                RedisModule_Free(vec);
                return RedisModule_ReplyWithErrorFormat(ctx,
                    "ERR syntax error in FILTER expression near: %s",
                        exprstr+errpos);
            }
            j += 2;
        } else {
            RedisModule_Free(vec);
            return RedisModule_ReplyWithError(ctx,
                "ERR syntax error in VSIM command");
        }
    }

    int threaded_request = 1; // Run on a thread, by default.
    if (filter_ef == 0) filter_ef = count * 100; // Max filter visited nodes.

    /* Disable threaded for MULTI/EXEC and Lua, or if explicitly
     * requested by the user via the NOTHREAD option. */
    if (no_thread || (RedisModule_GetContextFlags(ctx) &
                      (REDISMODULE_CTX_FLAGS_LUA|
                       REDISMODULE_CTX_FLAGS_MULTI)))
    {
        threaded_request = 0;
    }

    if (threaded_request) {
        /* Note: even if we create one thread per request, the underlying
         * HNSW library has a fixed number of slots for the threads, as it's
         * defined in HNSW_MAX_THREADS (beware that if you increase it,
         * every node will use more memory). This means that while this request
         * is threaded, and will NOT block Redis, it may end waiting for a
         * free slot if all the HNSW_MAX_THREADS slots are used. */
        RedisModuleBlockedClient *bc = RedisModule_BlockClient(ctx,NULL,NULL,NULL,0);
        pthread_t tid;
        void **targ = RedisModule_Alloc(sizeof(void*)*10);
        targ[0] = bc;
        targ[1] = vset;
        targ[2] = vec;
        targ[3] = (void*)count;
        targ[4] = RedisModule_Alloc(sizeof(float));
        *((float*)targ[4]) = epsilon;
        targ[5] = (void*)(unsigned long)withscores;
        targ[6] = (void*)(unsigned long)ef;
        targ[7] = (void*)filter_expr;
        targ[8] = (void*)(unsigned long)filter_ef;
        targ[9] = (void*)(unsigned long)ground_truth;
        RedisModule_BlockedClientMeasureTimeStart(bc);
        vset->thread_creation_pending++;
        if (pthread_create(&tid,NULL,VSIM_thread,targ) != 0) {
            vset->thread_creation_pending--;
            RedisModule_AbortBlock(bc);
            RedisModule_Free(targ[4]);
            RedisModule_Free(targ);
            VSIM_execute(ctx, vset, vec, count, epsilon, withscores, ef, filter_expr, filter_ef, ground_truth);
        }
    } else {
        VSIM_execute(ctx, vset, vec, count, epsilon, withscores, ef, filter_expr, filter_ef, ground_truth);
    }

    return REDISMODULE_OK;
}

/* VDIM <key>: return the dimension of vectors in the vector set. */
int VDIM_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc != 2) return RedisModule_WrongArity(ctx);

    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1], REDISMODULE_READ);
    int type = RedisModule_KeyType(key);

    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithError(ctx, "ERR key does not exist");

    if (RedisModule_ModuleTypeGetType(key) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);
    return RedisModule_ReplyWithLongLong(ctx, vset->hnsw->vector_dim);
}

/* VCARD <key>: return cardinality (num of elements) of the vector set. */
int VCARD_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc != 2) return RedisModule_WrongArity(ctx);

    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1], REDISMODULE_READ);
    int type = RedisModule_KeyType(key);

    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithLongLong(ctx, 0);

    if (RedisModule_ModuleTypeGetType(key) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);
    return RedisModule_ReplyWithLongLong(ctx, vset->hnsw->node_count);
}

/* VREM key element
 * Remove an element from a vector set.
 * Returns 1 if the element was found and removed, 0 if not found. */
int VREM_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx); /* Use automatic memory management. */

    if (argc != 3) return RedisModule_WrongArity(ctx);

    /* Get key and value */
    RedisModuleString *key = argv[1];
    RedisModuleString *element = argv[2];

    /* Open key */
    RedisModuleKey *keyptr = RedisModule_OpenKey(ctx, key,
        REDISMODULE_READ|REDISMODULE_WRITE);
    int type = RedisModule_KeyType(keyptr);

    /* Handle non-existing key or wrong type */
    if (type == REDISMODULE_KEYTYPE_EMPTY) {
        return RedisModule_ReplyWithBool(ctx, 0);
    }
    if (RedisModule_ModuleTypeGetType(keyptr) != VectorSetType) {
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);
    }

    /* Get vector set from key */
    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(keyptr);

    /* Find the node for this element */
    hnswNode *node = RedisModule_DictGet(vset->dict, element, NULL);
    if (!node) {
        return RedisModule_ReplyWithBool(ctx, 0);
    }

    /* Remove from dictionary */
    RedisModule_DictDel(vset->dict, element, NULL);

    /* Remove from HNSW graph using the high-level API that handles
     * locking and cleanup. We pass RedisModule_FreeString as the value
     * free function since the strings were retained at insertion time. */
    struct vsetNodeVal *nv = node->value;
    if (nv->attrib != NULL) vset->numattribs--;
    RedisModule_Assert(hnsw_delete_node(vset->hnsw, node, vectorSetReleaseNodeValue) == 1);

    /* Destroy empty vector set. */
    if (RedisModule_DictSize(vset->dict) == 0) {
        RedisModule_DeleteKey(keyptr);
    }

    /* Reply and propagate the command */
    RedisModule_ReplyWithBool(ctx, 1);
    RedisModule_ReplicateVerbatim(ctx);
    return REDISMODULE_OK;
}

/* VEMB key element
 * Returns the embedding vector associated with an element, or NIL if not
 * found. The vector is returned in the same format it was added, but the
 * return value will have some lack of precision due to quantization and
 * normalization of vectors. Also, if items were added using REDUCE, the
 * reduced vector is returned instead. */
int VEMB_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);
    int raw_output = 0; // RAW option.

    if (argc < 3) return RedisModule_WrongArity(ctx);

    /* Parse arguments. */
    for (int j = 3; j < argc; j++) {
        const char *opt = RedisModule_StringPtrLen(argv[j], NULL);
        if (!strcasecmp(opt,"raw")) {
            raw_output = 1;
        } else {
            return RedisModule_ReplyWithError(ctx,"ERR invalid option");
        }
    }

    /* Get key and element. */
    RedisModuleString *key = argv[1];
    RedisModuleString *element = argv[2];

    /* Open key. */
    RedisModuleKey *keyptr = RedisModule_OpenKey(ctx, key, REDISMODULE_READ);
    int type = RedisModule_KeyType(keyptr);

    /* Handle non-existing key and key of wrong type. */
    if (type == REDISMODULE_KEYTYPE_EMPTY) {
        return RedisModule_ReplyWithNull(ctx);
    } else if (RedisModule_ModuleTypeGetType(keyptr) != VectorSetType) {
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);
    }

    /* Lookup the node about the specified element. */
    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(keyptr);
    hnswNode *node = RedisModule_DictGet(vset->dict, element, NULL);
    if (!node) {
        return RedisModule_ReplyWithNull(ctx);
    }

    if (raw_output) {
        int output_qrange = vset->hnsw->quant_type == HNSW_QUANT_Q8;
        RedisModule_ReplyWithArray(ctx, 3+output_qrange);
        RedisModule_ReplyWithSimpleString(ctx, vectorSetGetQuantName(vset));
        RedisModule_ReplyWithStringBuffer(ctx, node->vector, hnsw_quants_bytes(vset->hnsw));
        RedisModule_ReplyWithDouble(ctx, node->l2);
        if (output_qrange) RedisModule_ReplyWithDouble(ctx, node->quants_range);
    } else {
        /* Get the vector associated with the node. */
        float *vec = RedisModule_Alloc(sizeof(float) * vset->hnsw->vector_dim);
        hnsw_get_node_vector(vset->hnsw, node, vec); // May dequantize/denorm.

        /* Return as array of doubles. */
        RedisModule_ReplyWithArray(ctx, vset->hnsw->vector_dim);
        for (uint32_t i = 0; i < vset->hnsw->vector_dim; i++)
            RedisModule_ReplyWithDouble(ctx, vec[i]);
        RedisModule_Free(vec);
    }
    return REDISMODULE_OK;
}

/* VSETATTR key element json
 * Set or remove the JSON attribute associated with an element.
 * Setting an empty string removes the attribute.
 * The command returns one if the attribute was actually updated or
 * zero if there is no key or element. */
int VSETATTR_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc != 4) return RedisModule_WrongArity(ctx);

    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1],
        REDISMODULE_READ|REDISMODULE_WRITE);
    int type = RedisModule_KeyType(key);

    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithBool(ctx, 0);

    if (RedisModule_ModuleTypeGetType(key) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);
    hnswNode *node = RedisModule_DictGet(vset->dict, argv[2], NULL);
    if (!node)
        return RedisModule_ReplyWithBool(ctx, 0);

    struct vsetNodeVal *nv = node->value;
    RedisModuleString *new_attr = argv[3];

    /* Background VSIM operations use the node attributes, so
     * wait for background operations before messing with them. */
    vectorSetWaitAllBackgroundClients(vset,0);

    /* Set or delete the attribute based on the fact it's an empty
     * string or not. */
    size_t attrlen;
    RedisModule_StringPtrLen(new_attr, &attrlen);
    if (attrlen == 0) {
        // If we had an attribute before, decrease the count and free it.
        if (nv->attrib) {
            vset->numattribs--;
            RedisModule_FreeString(NULL, nv->attrib);
            nv->attrib = NULL;
        }
    } else {
        // If we didn't have an attribute before, increase the count.
        // Otherwise free the old one.
        if (nv->attrib) {
            RedisModule_FreeString(NULL, nv->attrib);
        } else {
            vset->numattribs++;
        }
        // Set new attribute.
        RedisModule_RetainString(NULL, new_attr);
        nv->attrib = new_attr;
    }

    RedisModule_ReplyWithBool(ctx, 1);
    RedisModule_ReplicateVerbatim(ctx);
    return REDISMODULE_OK;
}

/* VGETATTR key element
 * Get the JSON attribute associated with an element.
 * Returns NIL if the element has no attribute or doesn't exist. */
int VGETATTR_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc != 3) return RedisModule_WrongArity(ctx);

    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1], REDISMODULE_READ);
    int type = RedisModule_KeyType(key);

    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithNull(ctx);

    if (RedisModule_ModuleTypeGetType(key) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);
    hnswNode *node = RedisModule_DictGet(vset->dict, argv[2], NULL);
    if (!node)
        return RedisModule_ReplyWithNull(ctx);

    struct vsetNodeVal *nv = node->value;
    if (!nv->attrib)
        return RedisModule_ReplyWithNull(ctx);

    return RedisModule_ReplyWithString(ctx, nv->attrib);
}

/* ============================== Reflection ================================ */

/* VLINKS key element [WITHSCORES]
 * Returns the neighbors of an element at each layer in the HNSW graph.
 * Reply is an array of arrays, where each nested array represents one level
 * of neighbors, from highest level to level 0. If WITHSCORES is specified,
 * each neighbor is followed by its distance from the element. */
int VLINKS_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc < 3 || argc > 4) return RedisModule_WrongArity(ctx);

    RedisModuleString *key = argv[1];
    RedisModuleString *element = argv[2];

    /* Parse WITHSCORES option. */
    int withscores = 0;
    if (argc == 4) {
        const char *opt = RedisModule_StringPtrLen(argv[3], NULL);
        if (strcasecmp(opt, "WITHSCORES") != 0) {
            return RedisModule_WrongArity(ctx);
        }
        withscores = 1;
    }

    RedisModuleKey *keyptr = RedisModule_OpenKey(ctx, key, REDISMODULE_READ);
    int type = RedisModule_KeyType(keyptr);

    /* Handle non-existing key or wrong type. */
    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithNull(ctx);

    if (RedisModule_ModuleTypeGetType(keyptr) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    /* Find the node for this element. */
    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(keyptr);
    hnswNode *node = RedisModule_DictGet(vset->dict, element, NULL);
    if (!node)
        return RedisModule_ReplyWithNull(ctx);

    /* Reply with array of arrays, one per level. */
    RedisModule_ReplyWithArray(ctx, node->level + 1);

    /* For each level, from highest to lowest: */
    for (int i = node->level; i >= 0; i--) {
        /* Reply with array of neighbors at this level. */
        if (withscores)
            RedisModule_ReplyWithMap(ctx,node->layers[i].num_links);
        else
            RedisModule_ReplyWithArray(ctx,node->layers[i].num_links);

        /* Add each neighbor's element value to the array. */
        for (uint32_t j = 0; j < node->layers[i].num_links; j++) {
            struct vsetNodeVal *nv = node->layers[i].links[j]->value;
            RedisModule_ReplyWithString(ctx, nv->item);
            if (withscores) {
                float distance = hnsw_distance(vset->hnsw, node, node->layers[i].links[j]);
                /* Convert distance to similarity score to match
                 * VSIM behavior.*/
                float similarity = 1.0 - distance/2.0;
                RedisModule_ReplyWithDouble(ctx, similarity);
            }
        }
    }
    return REDISMODULE_OK;
}

/* VINFO key
 * Returns information about a vector set, both visible and hidden
 * features of the HNSW data structure. */
int VINFO_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);

    if (argc != 2) return RedisModule_WrongArity(ctx);

    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1], REDISMODULE_READ);
    int type = RedisModule_KeyType(key);

    if (type == REDISMODULE_KEYTYPE_EMPTY)
        return RedisModule_ReplyWithNullArray(ctx);

    if (RedisModule_ModuleTypeGetType(key) != VectorSetType)
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);

    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);

    /* Reply with hash */
    RedisModule_ReplyWithMap(ctx, 9);

    /* Quantization type */
    RedisModule_ReplyWithSimpleString(ctx, "quant-type");
    RedisModule_ReplyWithSimpleString(ctx, vectorSetGetQuantName(vset));

    /* HNSW M value */
    RedisModule_ReplyWithSimpleString(ctx, "hnsw-m");
    RedisModule_ReplyWithLongLong(ctx, vset->hnsw->M);

    /* Vector dimensionality. */
    RedisModule_ReplyWithSimpleString(ctx, "vector-dim");
    RedisModule_ReplyWithLongLong(ctx, vset->hnsw->vector_dim);

    /* Original input dimension before projection.
     * This is zero for vector sets without a random projection matrix. */
    RedisModule_ReplyWithSimpleString(ctx, "projection-input-dim");
    RedisModule_ReplyWithLongLong(ctx, vset->proj_input_size);

    /* Number of elements. */
    RedisModule_ReplyWithSimpleString(ctx, "size");
    RedisModule_ReplyWithLongLong(ctx, vset->hnsw->node_count);

    /* Max level of HNSW. */
    RedisModule_ReplyWithSimpleString(ctx, "max-level");
    RedisModule_ReplyWithLongLong(ctx, vset->hnsw->max_level);

    /* Number of nodes with attributes. */
    RedisModule_ReplyWithSimpleString(ctx, "attributes-count");
    RedisModule_ReplyWithLongLong(ctx, vset->numattribs);

    /* Vector set ID. */
    RedisModule_ReplyWithSimpleString(ctx, "vset-uid");
    RedisModule_ReplyWithLongLong(ctx, vset->id);

    /* HNSW max node ID. */
    RedisModule_ReplyWithSimpleString(ctx, "hnsw-max-node-uid");
    RedisModule_ReplyWithLongLong(ctx, vset->hnsw->last_id);

    return REDISMODULE_OK;
}

/* VRANDMEMBER key [count]
 * Return random members from a vector set.
 *
 * Without count: returns a single random member.
 * With positive count: N unique random members (no duplicates).
 * With negative count: N random members (with possible duplicates).
 *
 * If the key doesn't exist, returns NULL if count is not given, or
 * an empty array if a count was given. */
int VRANDMEMBER_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx); /* Use automatic memory management. */

    /* Check arguments. */
    if (argc != 2 && argc != 3) return RedisModule_WrongArity(ctx);

    /* Parse optional count argument. */
    long long count = 1;  /* Default is to return a single element. */
    int with_count = (argc == 3);

    if (with_count) {
        if (RedisModule_StringToLongLong(argv[2], &count) != REDISMODULE_OK) {
            return RedisModule_ReplyWithError(ctx,
                "ERR COUNT value is not an integer");
        }
        /* Count = 0 is a special case, return empty array */
        if (count == 0) {
            return RedisModule_ReplyWithEmptyArray(ctx);
        }
    }

    /* Open key. */
    RedisModuleKey *key = RedisModule_OpenKey(ctx, argv[1], REDISMODULE_READ);
    int type = RedisModule_KeyType(key);

    /* Handle non-existing key. */
    if (type == REDISMODULE_KEYTYPE_EMPTY) {
        if (!with_count) {
            return RedisModule_ReplyWithNull(ctx);
        } else {
            return RedisModule_ReplyWithEmptyArray(ctx);
        }
    }

    /* Check key type. */
    if (RedisModule_ModuleTypeGetType(key) != VectorSetType) {
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);
    }

    /* Get vector set from key. */
    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(key);
    uint64_t set_size = vset->hnsw->node_count;

    /* No elements in the set? */
    if (set_size == 0) {
        if (!with_count) {
            return RedisModule_ReplyWithNull(ctx);
        } else {
            return RedisModule_ReplyWithEmptyArray(ctx);
        }
    }

    /* Case 1: No count specified: return a single element. */
    if (!with_count) {
        hnswNode *random_node = hnsw_random_node(vset->hnsw, 0);
        if (random_node) {
            struct vsetNodeVal *nv = random_node->value;
            return RedisModule_ReplyWithString(ctx, nv->item);
        } else {
            return RedisModule_ReplyWithNull(ctx);
        }
    }

    /* Case 2: COUNT option given, return an array of elements. */
    int allow_duplicates = (count < 0);
    long long abs_count = (count < 0) ? -count : count;

    /* Cap the count to the set size if we are not allowing duplicates. */
    if (!allow_duplicates && abs_count > (long long)set_size)
        abs_count = set_size;

    /* Prepare reply. */
    RedisModule_ReplyWithArray(ctx, abs_count);

    if (allow_duplicates) {
        /* Simple case: With duplicates, just pick random nodes
         * abs_count times. */
        for (long long i = 0; i < abs_count; i++) {
            hnswNode *random_node = hnsw_random_node(vset->hnsw,0);
            struct vsetNodeVal *nv = random_node->value;
            RedisModule_ReplyWithString(ctx, nv->item);
        }
    } else {
        /* Case where count is positive: we need unique elements.
         * But, if the user asked for many elements, selecting so
         * many (> 20%) random nodes may be too expansive: we just start
         * from a random element and follow the next link.
         *
         * Otherwisem for the <= 20% case, a dictionary is used to
         * reject duplicates. */
        int use_dict = (abs_count <= set_size * 0.2);

        if (use_dict) {
            RedisModuleDict *returned = RedisModule_CreateDict(ctx);

            long long returned_count = 0;
            while (returned_count < abs_count) {
                hnswNode *random_node = hnsw_random_node(vset->hnsw, 0);
                struct vsetNodeVal *nv = random_node->value;

                /* Check if we've already returned this element. */
                if (RedisModule_DictGet(returned, nv->item, NULL) == NULL) {
                    /* Mark as returned and add to results. */
                    RedisModule_DictSet(returned, nv->item, (void*)1);
                    RedisModule_ReplyWithString(ctx, nv->item);
                    returned_count++;
                }
            }
            RedisModule_FreeDict(ctx, returned);
        } else {
            /* For large samples, get a random starting node and walk
             * the list.
             *
             * IMPORTANT: doing so does not really generate random
             * elements: it's just a linear scan, but we have no choices.
             * If we generate too many random elements, more and more would
             * fail the check of being novel (not yet collected in the set
             * to return) if the % of elements to emit is too large, we would
             * spend too much CPU. */
            hnswNode *start_node = hnsw_random_node(vset->hnsw, 0);
            hnswNode *current = start_node;

            long long returned_count = 0;
            while (returned_count < abs_count) {
                if (current == NULL) {
                    /* Restart from head if we hit the end. */
                    current = vset->hnsw->head;
                }
                struct vsetNodeVal *nv = current->value;
                RedisModule_ReplyWithString(ctx, nv->item);
                returned_count++;
                current = current->next;
            }
        }
    }
    return REDISMODULE_OK;
}

/* VISMEMBER key element
 * Check if an element exists in a vector set.
 * Returns 1 if the element exists, 0 if not. */
int VISMEMBER_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    RedisModule_AutoMemory(ctx);
    if (argc != 3) return RedisModule_WrongArity(ctx);

    RedisModuleString *key = argv[1];
    RedisModuleString *element = argv[2];

    /* Open key. */
    RedisModuleKey *keyptr = RedisModule_OpenKey(ctx, key, REDISMODULE_READ);
    int type = RedisModule_KeyType(keyptr);

    /* Handle non-existing key or wrong type. */
    if (type == REDISMODULE_KEYTYPE_EMPTY) {
        /* An element of a non existing key does not exist, like
         * SISMEMBER & similar. */
        return RedisModule_ReplyWithBool(ctx, 0);
    }
    if (RedisModule_ModuleTypeGetType(keyptr) != VectorSetType) {
        return RedisModule_ReplyWithError(ctx, REDISMODULE_ERRORMSG_WRONGTYPE);
    }

    /* Get the object and test membership via the dictionary in constant
     * time (assuming a member of average size). */
    struct vsetObject *vset = RedisModule_ModuleTypeGetValue(keyptr);
    hnswNode *node = RedisModule_DictGet(vset->dict, element, NULL);
    return RedisModule_ReplyWithBool(ctx, node != NULL);
}

/* ============================== vset type methods ========================= */

#define SAVE_FLAG_HAS_PROJMATRIX    (1<<0)
#define SAVE_FLAG_HAS_ATTRIBS       (1<<1)

/* Save object to RDB */
void VectorSetRdbSave(RedisModuleIO *rdb, void *value) {
    struct vsetObject *vset = value;
    RedisModule_SaveUnsigned(rdb, vset->hnsw->vector_dim);
    RedisModule_SaveUnsigned(rdb, vset->hnsw->node_count);

    uint32_t hnsw_config = (vset->hnsw->quant_type & 0xff) |
                           ((vset->hnsw->M & 0xffff) << 8);
    RedisModule_SaveUnsigned(rdb, hnsw_config);

    uint32_t save_flags = 0;
    if (vset->proj_matrix) save_flags |= SAVE_FLAG_HAS_PROJMATRIX;
    if (vset->numattribs != 0) save_flags |= SAVE_FLAG_HAS_ATTRIBS;
    RedisModule_SaveUnsigned(rdb, save_flags);

    /* Save projection matrix if present */
    if (vset->proj_matrix) {
        uint32_t input_dim = vset->proj_input_size;
        uint32_t output_dim = vset->hnsw->vector_dim;
        RedisModule_SaveUnsigned(rdb, input_dim);
        // Output dim is the same as the first value saved
        // above, so we don't save it.

        // Save projection matrix as binary blob
        size_t matrix_size = sizeof(float) * input_dim * output_dim;
        RedisModule_SaveStringBuffer(rdb, (const char *)vset->proj_matrix, matrix_size);
    }

    hnswNode *node = vset->hnsw->head;
    while(node) {
        struct vsetNodeVal *nv = node->value;
        RedisModule_SaveString(rdb, nv->item);
        if (vset->numattribs) {
            if (nv->attrib)
                RedisModule_SaveString(rdb, nv->attrib);
            else
                RedisModule_SaveStringBuffer(rdb, "", 0);
        }
        hnswSerNode *sn = hnsw_serialize_node(vset->hnsw,node);
        RedisModule_SaveStringBuffer(rdb, (const char *)sn->vector, sn->vector_size);
        RedisModule_SaveUnsigned(rdb, sn->params_count);
        for (uint32_t j = 0; j < sn->params_count; j++)
            RedisModule_SaveUnsigned(rdb, sn->params[j]);
        hnsw_free_serialized_node(sn);
        node = node->next;
    }
}

/* Load object from RDB. Recover from recoverable errors (read errors)
 * by performing cleanup. */
void *VectorSetRdbLoad(RedisModuleIO *rdb, int encver) {
    if (encver != 0) return NULL;  // Invalid version

    uint32_t dim = RedisModule_LoadUnsigned(rdb);
    uint64_t elements = RedisModule_LoadUnsigned(rdb);
    uint32_t hnsw_config = RedisModule_LoadUnsigned(rdb);
    if (RedisModule_IsIOError(rdb)) return NULL;
    uint32_t quant_type = hnsw_config & 0xff;
    uint32_t hnsw_m = (hnsw_config >> 8) & 0xffff;

    /* Check that the quantization type is correct. Otherwise
     * return ASAP signaling the error. */
    if (quant_type != HNSW_QUANT_NONE &&
        quant_type != HNSW_QUANT_Q8 &&
        quant_type != HNSW_QUANT_BIN) return NULL;

    if (hnsw_m == 0) hnsw_m = 16; // Default, useful for RDB files predating
                                  // this configuration parameter: it was fixed
                                  // to 16.
    struct vsetObject *vset = createVectorSetObject(dim,quant_type,hnsw_m);
    RedisModule_Assert(vset != NULL);

    /* Load projection matrix if present */
    uint32_t save_flags = RedisModule_LoadUnsigned(rdb);
    if (RedisModule_IsIOError(rdb)) goto ioerr;
    int has_projection = save_flags & SAVE_FLAG_HAS_PROJMATRIX;
    int has_attribs = save_flags & SAVE_FLAG_HAS_ATTRIBS;
    if (has_projection) {
        uint32_t input_dim = RedisModule_LoadUnsigned(rdb);
        if (RedisModule_IsIOError(rdb)) goto ioerr;
        uint32_t output_dim = dim;
        size_t matrix_size = sizeof(float) * input_dim * output_dim;

        vset->proj_matrix = RedisModule_Alloc(matrix_size);
        vset->proj_input_size = input_dim;

        // Load projection matrix as a binary blob
        char *matrix_blob = RedisModule_LoadStringBuffer(rdb, NULL);
        if (matrix_blob == NULL) goto ioerr;
        memcpy(vset->proj_matrix, matrix_blob, matrix_size);
        RedisModule_Free(matrix_blob);
    }

    while(elements--) {
        // Load associated string element.
        RedisModuleString *ele = RedisModule_LoadString(rdb);
        if (RedisModule_IsIOError(rdb)) goto ioerr;
        RedisModuleString *attrib = NULL;
        if (has_attribs) {
            attrib = RedisModule_LoadString(rdb);
            if (RedisModule_IsIOError(rdb)) {
                RedisModule_FreeString(NULL,ele);
                goto ioerr;
            }
            size_t attrlen;
            RedisModule_StringPtrLen(attrib,&attrlen);
            if (attrlen == 0) {
                RedisModule_FreeString(NULL,attrib);
                attrib = NULL;
            }
        }
        size_t vector_len;
        void *vector = RedisModule_LoadStringBuffer(rdb, &vector_len);
        if (RedisModule_IsIOError(rdb)) {
            RedisModule_FreeString(NULL,ele);
            if (attrib) RedisModule_FreeString(NULL,attrib);
            goto ioerr;
        }
        uint32_t vector_bytes = hnsw_quants_bytes(vset->hnsw);
        if (vector_len != vector_bytes) {
            RedisModule_LogIOError(rdb,"warning",
                                       "Mismatching vector dimension");
            RedisModule_FreeString(NULL,ele);
            if (attrib) RedisModule_FreeString(NULL,attrib);
            RedisModule_Free(vector);
            goto ioerr;
        }

        // Load node parameters back.
        uint32_t params_count = RedisModule_LoadUnsigned(rdb);
        if (RedisModule_IsIOError(rdb)) {
            RedisModule_FreeString(NULL,ele);
            if (attrib) RedisModule_FreeString(NULL,attrib);
            RedisModule_Free(vector);
            goto ioerr;
        }

        uint64_t *params = RedisModule_Alloc(params_count*sizeof(uint64_t));
        for (uint32_t j = 0; j < params_count; j++) {
            // Ignore loading errors here: handled at the end of the loop.
            params[j] = RedisModule_LoadUnsigned(rdb);
        }
        if (RedisModule_IsIOError(rdb)) {
            RedisModule_FreeString(NULL,ele);
            if (attrib) RedisModule_FreeString(NULL,attrib);
            RedisModule_Free(vector);
            RedisModule_Free(params);
            goto ioerr;
        }

        struct vsetNodeVal *nv = RedisModule_Alloc(sizeof(*nv));
        nv->item = ele;
        nv->attrib = attrib;
        hnswNode *node = hnsw_insert_serialized(vset->hnsw, vector, params, params_count, nv);
        if (node == NULL) {
            RedisModule_LogIOError(rdb,"warning",
                                       "Vector set node index loading error");
            vectorSetReleaseNodeValue(nv);
            RedisModule_Free(vector);
            RedisModule_Free(params);
            goto ioerr;
        }
        if (nv->attrib) vset->numattribs++;
        RedisModule_DictSet(vset->dict,ele,node);
        RedisModule_Free(vector);
        RedisModule_Free(params);
    }
    if (!hnsw_deserialize_index(vset->hnsw)) goto ioerr;

    return vset;

ioerr:
    /* We want to recover from I/O errors and free the partially allocated
     * data structure to support diskless replication. */
    vectorSetReleaseObject(vset);
    return NULL;
}

/* Calculate memory usage */
size_t VectorSetMemUsage(const void *value) {
    const struct vsetObject *vset = value;
    size_t size = sizeof(*vset);

    /* Account for HNSW index base structure */
    size += sizeof(HNSW);

    /* Account for projection matrix if present */
    if (vset->proj_matrix) {
        /* For the matrix size, we need the input dimension. We can get it
         * from the first node if the set is not empty. */
        uint32_t input_dim = vset->proj_input_size;
        uint32_t output_dim = vset->hnsw->vector_dim;
        size += sizeof(float) * input_dim * output_dim;
    }

    /* Account for each node's memory usage. */
    hnswNode *node = vset->hnsw->head;
    if (node == NULL) return size;

    /* Base node structure. */
    size += sizeof(*node) * vset->hnsw->node_count;

    /* Vector storage. */
    uint64_t vec_storage = hnsw_quants_bytes(vset->hnsw);
    size += vec_storage * vset->hnsw->node_count;

    /* Layers array. We use 1.33 as average nodes layers count. */
    uint64_t layers_storage = sizeof(hnswNodeLayer) * vset->hnsw->node_count;
    layers_storage = layers_storage * 4 / 3; // 1.33 times.
    size += layers_storage;

    /* All the nodes have layer 0 links. */
    uint64_t level0_links = node->layers[0].max_links;
    uint64_t other_levels_links = level0_links/2;
    size += sizeof(hnswNode*) * level0_links * vset->hnsw->node_count;

    /* Add the 0.33 remaining part, but upper layers have less links. */
    size += (sizeof(hnswNode*) * other_levels_links * vset->hnsw->node_count)/3;

    /* Associated string value and attributres.
     * Use Redis Module API to get string size, and guess that all the
     * elements have similar size as the first few. */
    size_t items_scanned = 0, items_size = 0;
    size_t attribs_scanned = 0, attribs_size = 0;
    int scan_effort = 20;
    while(scan_effort > 0 && node) {
        struct vsetNodeVal *nv = node->value;
        items_size += RedisModule_MallocSizeString(nv->item);
        items_scanned++;
        if (nv->attrib) {
            attribs_size += RedisModule_MallocSizeString(nv->attrib);
            attribs_scanned++;
        }
        scan_effort--;
        node = node->next;
    }

    /* Add the memory usage due to items. */
    if (items_scanned)
        size += items_size / items_scanned * vset->hnsw->node_count;

    /* Add memory usage due to attributres. */
    if (attribs_scanned == 0) {
        /* We were not lucky enough to find a single attribute in the
         * first few items? Let's use a fixed arbitrary value. */
        attribs_scanned = 1;
        attribs_size = 64;
    }
    size += attribs_size / attribs_scanned * vset->numattribs;

    /* Account for dictionary overhead - this is an approximation. */
    size += RedisModule_DictSize(vset->dict) * (sizeof(void*) * 2);

    return size;
}

/* Free the entire data structure */
void VectorSetFree(void *value) {
    struct vsetObject *vset = value;

    vectorSetWaitAllBackgroundClients(vset,1);
    vectorSetReleaseObject(value);
}

/* Add object digest to the digest context */
void VectorSetDigest(RedisModuleDigest *md, void *value) {
    struct vsetObject *vset = value;

    /* Add consistent order-independent hash of all vectors */
    hnswNode *node = vset->hnsw->head;

    /* Hash the vector dimension and number of nodes. */
    RedisModule_DigestAddLongLong(md, vset->hnsw->node_count);
    RedisModule_DigestAddLongLong(md, vset->hnsw->vector_dim);
    RedisModule_DigestEndSequence(md);

    while(node) {
        struct vsetNodeVal *nv = node->value;
        /* Hash each vector component */
        RedisModule_DigestAddStringBuffer(md, node->vector, hnsw_quants_bytes(vset->hnsw));
        /* Hash the associated value */
        size_t len;
        const char *str = RedisModule_StringPtrLen(nv->item, &len);
        RedisModule_DigestAddStringBuffer(md, (char*)str, len);
        if (nv->attrib) {
            str = RedisModule_StringPtrLen(nv->attrib, &len);
            RedisModule_DigestAddStringBuffer(md, (char*)str, len);
        }
        node = node->next;
        RedisModule_DigestEndSequence(md);
    }
}

/* This function must be present on each Redis module. It is used in order to
 * register the commands into the Redis server. */
int RedisModule_OnLoad(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    REDISMODULE_NOT_USED(argv);
    REDISMODULE_NOT_USED(argc);

    if (RedisModule_Init(ctx,"vectorset",1,REDISMODULE_APIVER_1)
        == REDISMODULE_ERR) return REDISMODULE_ERR;

    RedisModule_SetModuleOptions(ctx, REDISMODULE_OPTIONS_HANDLE_IO_ERRORS|REDISMODULE_OPTIONS_HANDLE_REPL_ASYNC_LOAD);

    RedisModuleTypeMethods tm = {
        .version = REDISMODULE_TYPE_METHOD_VERSION,
        .rdb_load = VectorSetRdbLoad,
        .rdb_save = VectorSetRdbSave,
        .aof_rewrite = NULL,
        .mem_usage = VectorSetMemUsage,
        .free = VectorSetFree,
        .digest = VectorSetDigest
    };

    VectorSetType = RedisModule_CreateDataType(ctx,"vectorset",0,&tm);
    if (VectorSetType == NULL) return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx,"VADD",
        VADD_RedisCommand,"write deny-oom",1,1,1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx,"VREM",
        VREM_RedisCommand,"write",1,1,1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx,"VSIM",
        VSIM_RedisCommand,"readonly",1,1,1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VDIM",
        VDIM_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VCARD",
        VCARD_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VEMB",
        VEMB_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VLINKS",
        VLINKS_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VINFO",
        VINFO_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VSETATTR",
        VSETATTR_RedisCommand, "write fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VGETATTR",
        VGETATTR_RedisCommand, "readonly fast", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VRANDMEMBER",
        VRANDMEMBER_RedisCommand, "readonly", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    if (RedisModule_CreateCommand(ctx, "VISMEMBER",
        VISMEMBER_RedisCommand, "readonly", 1, 1, 1) == REDISMODULE_ERR)
        return REDISMODULE_ERR;

    hnsw_set_allocator(RedisModule_Free, RedisModule_Alloc,
                       RedisModule_Realloc);

    return REDISMODULE_OK;
}

int VectorSets_OnLoad(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
    return RedisModule_OnLoad(ctx, argv, argc);
}