File: w2v.c

package info (click to toggle)
redis 5%3A8.0.2-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 22,304 kB
  • sloc: ansic: 216,903; tcl: 51,562; sh: 4,625; perl: 4,214; cpp: 3,568; python: 2,954; makefile: 2,055; ruby: 639; javascript: 30; csh: 7
file content (539 lines) | stat: -rw-r--r-- 18,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 * HNSW (Hierarchical Navigable Small World) Implementation
 * Based on the paper by Yu. A. Malkov, D. A. Yashunin
 *
 * Copyright (c) 2009-Present, Redis Ltd.
 * All rights reserved.
 *
 * Licensed under your choice of (a) the Redis Source Available License 2.0
 * (RSALv2); or (b) the Server Side Public License v1 (SSPLv1); or (c) the
 * GNU Affero General Public License v3 (AGPLv3).
 * Originally authored by: Salvatore Sanfilippo
 */

#define _DEFAULT_SOURCE
#define _USE_MATH_DEFINES
#define _POSIX_C_SOURCE 200809L

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <sys/time.h>
#include <time.h>
#include <stdint.h>
#include <pthread.h>
#include <stdatomic.h>
#include <math.h>

#include "hnsw.h"

/* Get current time in milliseconds */
uint64_t ms_time(void) {
    struct timeval tv;
    gettimeofday(&tv, NULL);
    return (uint64_t)tv.tv_sec * 1000 + (tv.tv_usec / 1000);
}

/* Implementation of the recall test with random vectors. */
void test_recall(HNSW *index, int ef) {
    const int num_test_vectors = 10000;
    const int k = 100; // Number of nearest neighbors to find.
    if (ef < k) ef = k;

    // Add recall distribution counters (2% bins from 0-100%).
    int recall_bins[50] = {0};

    // Create array to store vectors for mixing.
    int num_source_vectors = 1000; // Enough, since we mix them.
    float **source_vectors = malloc(sizeof(float*) * num_source_vectors);
    if (!source_vectors) {
        printf("Failed to allocate memory for source vectors\n");
        return;
    }

    // Allocate memory for each source vector.
    for (int i = 0; i < num_source_vectors; i++) {
        source_vectors[i] = malloc(sizeof(float) * 300);
        if (!source_vectors[i]) {
            printf("Failed to allocate memory for source vector %d\n", i);
            // Clean up already allocated vectors.
            for (int j = 0; j < i; j++) free(source_vectors[j]);
            free(source_vectors);
            return;
        }
    }

    /* Populate source vectors from the index, we just scan the
     * first N items. */
    int source_count = 0;
    hnswNode *current = index->head;
    while (current && source_count < num_source_vectors) {
        hnsw_get_node_vector(index, current, source_vectors[source_count]);
        source_count++;
        current = current->next;
    }

    if (source_count < num_source_vectors) {
        printf("Warning: Only found %d nodes for source vectors\n",
            source_count);
        num_source_vectors = source_count;
    }

    // Allocate memory for test vector.
    float *test_vector = malloc(sizeof(float) * 300);
    if (!test_vector) {
        printf("Failed to allocate memory for test vector\n");
        for (int i = 0; i < num_source_vectors; i++) {
            free(source_vectors[i]);
        }
        free(source_vectors);
        return;
    }

    // Allocate memory for results.
    hnswNode **hnsw_results = malloc(sizeof(hnswNode*) * ef);
    hnswNode **linear_results = malloc(sizeof(hnswNode*) * ef);
    float *hnsw_distances = malloc(sizeof(float) * ef);
    float *linear_distances = malloc(sizeof(float) * ef);

    if (!hnsw_results || !linear_results || !hnsw_distances || !linear_distances) {
        printf("Failed to allocate memory for results\n");
        if (hnsw_results) free(hnsw_results);
        if (linear_results) free(linear_results);
        if (hnsw_distances) free(hnsw_distances);
        if (linear_distances) free(linear_distances);
        for (int i = 0; i < num_source_vectors; i++) free(source_vectors[i]);
        free(source_vectors);
        free(test_vector);
        return;
    }

    // Initialize random seed.
    srand(time(NULL));

    // Perform recall test.
    printf("\nPerforming recall test with EF=%d on %d random vectors...\n",
           ef, num_test_vectors);
    double total_recall = 0.0;

    for (int t = 0; t < num_test_vectors; t++) {
        // Create a random vector by mixing 3 existing vectors.
        float weights[3] = {0.0};
        int src_indices[3] = {0};

        // Generate random weights.
        float weight_sum = 0.0;
        for (int i = 0; i < 3; i++) {
            weights[i] = (float)rand() / RAND_MAX;
            weight_sum += weights[i];
            src_indices[i] = rand() % num_source_vectors;
        }

        // Normalize weights.
        for (int i = 0; i < 3; i++) weights[i] /= weight_sum;

        // Mix vectors.
        memset(test_vector, 0, sizeof(float) * 300);
        for (int i = 0; i < 3; i++) {
            for (int j = 0; j < 300; j++) {
                test_vector[j] +=
                    weights[i] * source_vectors[src_indices[i]][j];
            }
        }

        // Perform HNSW search with the specified EF parameter.
        int slot = hnsw_acquire_read_slot(index);
        int hnsw_found = hnsw_search(index, test_vector, ef, hnsw_results, hnsw_distances, slot, 0);

        // Perform linear search (ground truth).
        int linear_found = hnsw_ground_truth_with_filter(index, test_vector, ef, linear_results, linear_distances, slot, 0, NULL, NULL);
        hnsw_release_read_slot(index, slot);

        // Calculate recall for this query (intersection size / k).
        if (hnsw_found > k) hnsw_found = k;
        if (linear_found > k) linear_found = k;
        int intersection_count = 0;
        for (int i = 0; i < linear_found; i++) {
            for (int j = 0; j < hnsw_found; j++) {
                if (linear_results[i] == hnsw_results[j]) {
                    intersection_count++;
                    break;
                }
            }
        }

        double recall = (double)intersection_count / linear_found;
        total_recall += recall;

        // Add to distribution bins (2% steps)
        int bin_index = (int)(recall * 50);
        if (bin_index >= 50) bin_index = 49; // Handle 100% recall case
        recall_bins[bin_index]++;

        // Show progress.
        if ((t+1) % 1000 == 0 || t == num_test_vectors-1) {
            printf("Processed %d/%d queries, current avg recall: %.2f%%\n",
                t+1, num_test_vectors, (total_recall / (t+1)) * 100);
        }
    }

    // Calculate and print final average recall.
    double avg_recall = (total_recall / num_test_vectors) * 100;
    printf("\nRecall Test Results:\n");
    printf("Average recall@%d (EF=%d): %.2f%%\n", k, ef, avg_recall);

    // Print recall distribution histogram.
    printf("\nRecall Distribution (2%% bins):\n");
    printf("================================\n");

    // Find the maximum bin count for scaling.
    int max_count = 0;
    for (int i = 0; i < 50; i++) {
        if (recall_bins[i] > max_count) max_count = recall_bins[i];
    }

    // Scale factor for histogram (max 50 chars wide)
    const int max_bars = 50;
    double scale = (max_count > max_bars) ? (double)max_bars / max_count : 1.0;

    // Print the histogram.
    for (int i = 0; i < 50; i++) {
        int bar_len = (int)(recall_bins[i] * scale);
        printf("%3d%%-%-3d%% | %-6d |", i*2, (i+1)*2, recall_bins[i]);
        for (int j = 0; j < bar_len; j++) printf("#");
        printf("\n");
    }

    // Cleanup.
    free(hnsw_results);
    free(linear_results);
    free(hnsw_distances);
    free(linear_distances);
    free(test_vector);
    for (int i = 0; i < num_source_vectors; i++) free(source_vectors[i]);
    free(source_vectors);
}

/* Example usage in main() */
int w2v_single_thread(int m_param, int quantization, uint64_t numele, int massdel, int self_recall, int recall_ef) {
    /* Create index */
    HNSW *index = hnsw_new(300, quantization, m_param);
    float v[300];
    uint16_t wlen;

    FILE *fp = fopen("word2vec.bin","rb");
    if (fp == NULL) {
        perror("word2vec.bin file missing");
        exit(1);
    }
    unsigned char header[8];
    if (fread(header,8,1,fp) <= 0) { // Skip header
        perror("Unexpected EOF");
        exit(1);
    }

    uint64_t id = 0;
    uint64_t start_time = ms_time();
    char *word = NULL;
    hnswNode *search_node = NULL;

    while(id < numele) {
        if (fread(&wlen,2,1,fp) == 0) break;
        word = malloc(wlen+1);
        if (fread(word,wlen,1,fp) <= 0) {
            perror("unexpected EOF");
            exit(1);
        }
        word[wlen] = 0;
        if (fread(v,300*sizeof(float),1,fp) <= 0) {
            perror("unexpected EOF");
            exit(1);
        }

        // Plain API that acquires a write lock for the whole time.
        hnswNode *added = hnsw_insert(index, v, NULL, 0, id++, word, 200);

        if (!strcmp(word,"banana")) search_node = added;
        if (!(id % 10000)) printf("%llu added\n", (unsigned long long)id);
    }
    uint64_t elapsed = ms_time() - start_time;
    fclose(fp);

    printf("%llu words added (%llu words/sec), last word: %s\n",
        (unsigned long long)index->node_count,
        (unsigned long long)id*1000/elapsed, word);

    /* Search query */
    if (search_node == NULL) search_node = index->head;
    hnsw_get_node_vector(index,search_node,v);
    hnswNode *neighbors[10];
    float distances[10];

    int found, j;
    start_time = ms_time();
    for (j = 0; j < 20000; j++)
        found = hnsw_search(index, v, 10, neighbors, distances, 0, 0);
    elapsed = ms_time() - start_time;
    printf("%d searches performed (%llu searches/sec), nodes found: %d\n",
        j, (unsigned long long)j*1000/elapsed, found);

    if (found > 0) {
        printf("Found %d neighbors:\n", found);
        for (int i = 0; i < found; i++) {
            printf("Node ID: %llu, distance: %f, word: %s\n",
                   (unsigned long long)neighbors[i]->id,
                   distances[i], (char*)neighbors[i]->value);
        }
    }

    // Self-recall test (ability to find the node by its own vector).
    if (self_recall) {
        hnsw_print_stats(index);
        hnsw_test_graph_recall(index,200,0);
    }

    // Recall test with random vectors.
    if (recall_ef > 0) {
        test_recall(index, recall_ef);
    }

    uint64_t connected_nodes;
    int reciprocal_links;
    hnsw_validate_graph(index, &connected_nodes, &reciprocal_links);

    if (massdel) {
        int remove_perc = 95;
        printf("\nRemoving %d%% of nodes...\n", remove_perc);
        uint64_t initial_nodes = index->node_count;

        hnswNode *current = index->head;
        while (current && index->node_count > initial_nodes*(100-remove_perc)/100) {
            hnswNode *next = current->next;
            hnsw_delete_node(index,current,free);
            current = next;
            // In order to don't remove only contiguous nodes, from time
            // skip a node.
            if (current && !(random() % remove_perc)) current = current->next;
        }
        printf("%llu nodes left\n", (unsigned long long)index->node_count);

        // Test again.
        hnsw_validate_graph(index, &connected_nodes, &reciprocal_links);
        hnsw_test_graph_recall(index,200,0);
    }

    hnsw_free(index,free);
    return 0;
}

struct threadContext {
    pthread_mutex_t FileAccessMutex;
    uint64_t numele;
    _Atomic uint64_t SearchesDone;
    _Atomic uint64_t id;
    FILE *fp;
    HNSW *index;
    float *search_vector;
};

// Note that in practical terms inserting with many concurrent threads
// may be *slower* and not faster, because there is a lot of
// contention. So this is more a robustness test than anything else.
//
// The optimistic commit API goal is actually to exploit the ability to
// add faster when there are many concurrent reads.
void *threaded_insert(void *ctxptr) {
    struct threadContext *ctx = ctxptr;
    char *word;
    float v[300];
    uint16_t wlen;

    while(1) {
        pthread_mutex_lock(&ctx->FileAccessMutex);
        if (fread(&wlen,2,1,ctx->fp) == 0) break;
        pthread_mutex_unlock(&ctx->FileAccessMutex);
        word = malloc(wlen+1);
        if (fread(word,wlen,1,ctx->fp) <= 0) {
            perror("Unexpected EOF");
            exit(1);
        }

        word[wlen] = 0;
        if (fread(v,300*sizeof(float),1,ctx->fp) <= 0) {
            perror("Unexpected EOF");
            exit(1);
        }

        // Check-and-set API that performs the costly scan for similar
        // nodes concurrently with other read threads, and finally
        // applies the check if the graph wasn't modified.
        InsertContext *ic;
        uint64_t next_id = ctx->id++;
        ic = hnsw_prepare_insert(ctx->index, v, NULL, 0, next_id, 200);
        if (hnsw_try_commit_insert(ctx->index, ic, word) == NULL) {
            // This time try locking since the start.
            hnsw_insert(ctx->index, v, NULL, 0, next_id, word, 200);
        }

        if (next_id >= ctx->numele) break;
        if (!((next_id+1) % 10000))
            printf("%llu added\n", (unsigned long long)next_id+1);
    }
    return NULL;
}

void *threaded_search(void *ctxptr) {
    struct threadContext *ctx = ctxptr;

    /* Search query */
    hnswNode *neighbors[10];
    float distances[10];
    int found = 0;
    uint64_t last_id = 0;

    while(ctx->id < 1000000) {
        int slot = hnsw_acquire_read_slot(ctx->index);
        found = hnsw_search(ctx->index, ctx->search_vector, 10, neighbors, distances, slot, 0);
        hnsw_release_read_slot(ctx->index,slot);
        last_id = ++ctx->id;
    }

    if (found > 0 && last_id == 1000000) {
        printf("Found %d neighbors:\n", found);
        for (int i = 0; i < found; i++) {
            printf("Node ID: %llu, distance: %f, word: %s\n",
                   (unsigned long long)neighbors[i]->id,
                   distances[i], (char*)neighbors[i]->value);
        }
    }
    return NULL;
}

int w2v_multi_thread(int m_param, int numthreads, int quantization, uint64_t numele) {
    /* Create index */
    struct threadContext ctx;

    ctx.index = hnsw_new(300, quantization, m_param);

    ctx.fp = fopen("word2vec.bin","rb");
    if (ctx.fp == NULL) {
        perror("word2vec.bin file missing");
        exit(1);
    }

    unsigned char header[8];
    if (fread(header,8,1,ctx.fp) <= 0) { // Skip header
        perror("Unexpected EOF");
        exit(1);
    }
    pthread_mutex_init(&ctx.FileAccessMutex,NULL);

    uint64_t start_time = ms_time();
    ctx.id = 0;
    ctx.numele = numele;
    pthread_t threads[numthreads];
    for (int j = 0; j < numthreads; j++)
        pthread_create(&threads[j], NULL, threaded_insert, &ctx);

    // Wait for all the threads to terminate adding items.
    for (int j = 0; j < numthreads; j++)
        pthread_join(threads[j],NULL);

    uint64_t elapsed = ms_time() - start_time;
    fclose(ctx.fp);

    // Obtain the last word.
    hnswNode *node = ctx.index->head;
    char *word = node->value;

    // We will search this last inserted word in the next test.
    // Let's save its embedding.
    ctx.search_vector = malloc(sizeof(float)*300);
    hnsw_get_node_vector(ctx.index,node,ctx.search_vector);

    printf("%llu words added (%llu words/sec), last word: %s\n",
        (unsigned long long)ctx.index->node_count,
        (unsigned long long)ctx.id*1000/elapsed, word);

    /* Search query */
    start_time = ms_time();
    ctx.id = 0; // We will use this atomic field to stop at N queries done.

    for (int j = 0; j < numthreads; j++)
        pthread_create(&threads[j], NULL, threaded_search, &ctx);

    // Wait for all the threads to terminate searching.
    for (int j = 0; j < numthreads; j++)
        pthread_join(threads[j],NULL);

    elapsed = ms_time() - start_time;
    printf("%llu searches performed (%llu searches/sec)\n",
        (unsigned long long)ctx.id,
        (unsigned long long)ctx.id*1000/elapsed);

    hnsw_print_stats(ctx.index);
    uint64_t connected_nodes;
    int reciprocal_links;
    hnsw_validate_graph(ctx.index, &connected_nodes, &reciprocal_links);
    printf("%llu connected nodes. Links all reciprocal: %d\n",
        (unsigned long long)connected_nodes, reciprocal_links);
    hnsw_free(ctx.index,free);
    return 0;
}

int main(int argc, char **argv) {
    int quantization = HNSW_QUANT_NONE;
    int numthreads = 0;
    uint64_t numele = 20000;
    int m_param = 0;  // Default value (0 means use HNSW_DEFAULT_M)

    /* This you can enable in single thread mode for testing: */
    int massdel = 0;       // If true, does the mass deletion test.
    int self_recall = 0;   // If true, does the self-recall test.
    int recall_ef = 0;     // If not 0, does the recall test with this EF value.

    for (int j = 1; j < argc; j++) {
        int moreargs = argc-j-1;

        if (!strcasecmp(argv[j],"--quant")) {
            quantization = HNSW_QUANT_Q8;
        } else if (!strcasecmp(argv[j],"--bin")) {
            quantization = HNSW_QUANT_BIN;
        } else if (!strcasecmp(argv[j],"--mass-del")) {
            massdel = 1;
        } else if (!strcasecmp(argv[j],"--self-recall")) {
            self_recall = 1;
        } else if (moreargs >= 1 && !strcasecmp(argv[j],"--recall")) {
            recall_ef = atoi(argv[j+1]);
            j++;
        } else if (moreargs >= 1 && !strcasecmp(argv[j],"--threads")) {
            numthreads = atoi(argv[j+1]);
            j++;
        } else if (moreargs >= 1 && !strcasecmp(argv[j],"--numele")) {
            numele = strtoll(argv[j+1],NULL,0);
            j++;
            if (numele < 1) numele = 1;
        } else if (moreargs >= 1 && !strcasecmp(argv[j],"--m")) {
            m_param = atoi(argv[j+1]);
            j++;
        } else if (!strcasecmp(argv[j],"--help")) {
            printf("%s [--quant] [--bin] [--thread <count>] [--numele <count>] [--m <count>] [--mass-del] [--self-recall] [--recall <ef>]\n", argv[0]);
            exit(0);
        } else {
            printf("Unrecognized option or wrong number of arguments: %s\n", argv[j]);
            exit(1);
        }
    }

    if (quantization == HNSW_QUANT_NONE) {
        printf("You can enable quantization with --quant\n");
    }

    if (numthreads > 0) {
        w2v_multi_thread(m_param, numthreads, quantization, numele);
    } else {
        printf("Single thread execution. Use --threads 4 for concurrent API\n");
        w2v_single_thread(m_param, quantization, numele, massdel, self_recall, recall_ef);
    }
}