1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  
     | 
    
      /* Hash table implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */
#include "fmacros.h"
#include "alloc.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include "dict.h"
/* -------------------------- private prototypes ---------------------------- */
static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
/* -------------------------- hash functions -------------------------------- */
/* Generic hash function (a popular one from Bernstein).
 * I tested a few and this was the best. */
static unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
    unsigned int hash = 5381;
    while (len--)
        hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
    return hash;
}
/* ----------------------------- API implementation ------------------------- */
/* Reset an hashtable already initialized with ht_init().
 * NOTE: This function should only called by ht_destroy(). */
static void _dictReset(dict *ht) {
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}
/* Create a new hash table */
static dict *dictCreate(dictType *type, void *privDataPtr) {
    dict *ht = hi_malloc(sizeof(*ht));
    if (ht == NULL)
        return NULL;
    _dictInit(ht,type,privDataPtr);
    return ht;
}
/* Initialize the hash table */
static int _dictInit(dict *ht, dictType *type, void *privDataPtr) {
    _dictReset(ht);
    ht->type = type;
    ht->privdata = privDataPtr;
    return DICT_OK;
}
/* Expand or create the hashtable */
static int dictExpand(dict *ht, unsigned long size) {
    dict n; /* the new hashtable */
    unsigned long realsize = _dictNextPower(size), i;
    /* the size is invalid if it is smaller than the number of
     * elements already inside the hashtable */
    if (ht->used > size)
        return DICT_ERR;
    _dictInit(&n, ht->type, ht->privdata);
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = hi_calloc(realsize,sizeof(dictEntry*));
    if (n.table == NULL)
        return DICT_ERR;
    /* Copy all the elements from the old to the new table:
     * note that if the old hash table is empty ht->size is zero,
     * so dictExpand just creates an hash table. */
    n.used = ht->used;
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;
        if (ht->table[i] == NULL) continue;
        /* For each hash entry on this slot... */
        he = ht->table[i];
        while(he) {
            unsigned int h;
            nextHe = he->next;
            /* Get the new element index */
            h = dictHashKey(ht, he->key) & n.sizemask;
            he->next = n.table[h];
            n.table[h] = he;
            ht->used--;
            /* Pass to the next element */
            he = nextHe;
        }
    }
    assert(ht->used == 0);
    hi_free(ht->table);
    /* Remap the new hashtable in the old */
    *ht = n;
    return DICT_OK;
}
/* Add an element to the target hash table */
static int dictAdd(dict *ht, void *key, void *val) {
    int index;
    dictEntry *entry;
    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(ht, key)) == -1)
        return DICT_ERR;
    /* Allocates the memory and stores key */
    entry = hi_malloc(sizeof(*entry));
    if (entry == NULL)
        return DICT_ERR;
    entry->next = ht->table[index];
    ht->table[index] = entry;
    /* Set the hash entry fields. */
    dictSetHashKey(ht, entry, key);
    dictSetHashVal(ht, entry, val);
    ht->used++;
    return DICT_OK;
}
/* Add an element, discarding the old if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
static int dictReplace(dict *ht, void *key, void *val) {
    dictEntry *entry, auxentry;
    /* Try to add the element. If the key
     * does not exists dictAdd will succeed. */
    if (dictAdd(ht, key, val) == DICT_OK)
        return 1;
    /* It already exists, get the entry */
    entry = dictFind(ht, key);
    if (entry == NULL)
        return 0;
    /* Free the old value and set the new one */
    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    auxentry = *entry;
    dictSetHashVal(ht, entry, val);
    dictFreeEntryVal(ht, &auxentry);
    return 0;
}
/* Search and remove an element */
static int dictDelete(dict *ht, const void *key) {
    unsigned int h;
    dictEntry *de, *prevde;
    if (ht->size == 0)
        return DICT_ERR;
    h = dictHashKey(ht, key) & ht->sizemask;
    de = ht->table[h];
    prevde = NULL;
    while(de) {
        if (dictCompareHashKeys(ht,key,de->key)) {
            /* Unlink the element from the list */
            if (prevde)
                prevde->next = de->next;
            else
                ht->table[h] = de->next;
            dictFreeEntryKey(ht,de);
            dictFreeEntryVal(ht,de);
            hi_free(de);
            ht->used--;
            return DICT_OK;
        }
        prevde = de;
        de = de->next;
    }
    return DICT_ERR; /* not found */
}
/* Destroy an entire hash table */
static int _dictClear(dict *ht) {
    unsigned long i;
    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;
        if ((he = ht->table[i]) == NULL) continue;
        while(he) {
            nextHe = he->next;
            dictFreeEntryKey(ht, he);
            dictFreeEntryVal(ht, he);
            hi_free(he);
            ht->used--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache structure */
    hi_free(ht->table);
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}
/* Clear & Release the hash table */
static void dictRelease(dict *ht) {
    _dictClear(ht);
    hi_free(ht);
}
static dictEntry *dictFind(dict *ht, const void *key) {
    dictEntry *he;
    unsigned int h;
    if (ht->size == 0) return NULL;
    h = dictHashKey(ht, key) & ht->sizemask;
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return he;
        he = he->next;
    }
    return NULL;
}
static void dictInitIterator(dictIterator *iter, dict *ht) {
    iter->ht = ht;
    iter->index = -1;
    iter->entry = NULL;
    iter->nextEntry = NULL;
}
static dictEntry *dictNext(dictIterator *iter) {
    while (1) {
        if (iter->entry == NULL) {
            iter->index++;
            if (iter->index >=
                    (signed)iter->ht->size) break;
            iter->entry = iter->ht->table[iter->index];
        } else {
            iter->entry = iter->nextEntry;
        }
        if (iter->entry) {
            /* We need to save the 'next' here, the iterator user
             * may delete the entry we are returning. */
            iter->nextEntry = iter->entry->next;
            return iter->entry;
        }
    }
    return NULL;
}
/* ------------------------- private functions ------------------------------ */
/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *ht) {
    /* If the hash table is empty expand it to the initial size,
     * if the table is "full" double its size. */
    if (ht->size == 0)
        return dictExpand(ht, DICT_HT_INITIAL_SIZE);
    if (ht->used == ht->size)
        return dictExpand(ht, ht->size*2);
    return DICT_OK;
}
/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size) {
    unsigned long i = DICT_HT_INITIAL_SIZE;
    if (size >= LONG_MAX) return LONG_MAX;
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}
/* Returns the index of a free slot that can be populated with
 * an hash entry for the given 'key'.
 * If the key already exists, -1 is returned. */
static int _dictKeyIndex(dict *ht, const void *key) {
    unsigned int h;
    dictEntry *he;
    /* Expand the hashtable if needed */
    if (_dictExpandIfNeeded(ht) == DICT_ERR)
        return -1;
    /* Compute the key hash value */
    h = dictHashKey(ht, key) & ht->sizemask;
    /* Search if this slot does not already contain the given key */
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return -1;
        he = he->next;
    }
    return h;
}
 
     |