1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
|
// NanoJPEG -- KeyJ's Tiny Baseline JPEG Decoder
// version 1.3.5 (2016-11-14)
// Copyright (c) 2009-2016 Martin J. Fiedler <martin.fiedler@gmx.net>
// published under the terms of the MIT license
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
///////////////////////////////////////////////////////////////////////////////
// DOCUMENTATION SECTION //
// read this if you want to know what this is all about //
///////////////////////////////////////////////////////////////////////////////
// INTRODUCTION
// ============
//
// This is a minimal decoder for baseline JPEG images. It accepts memory dumps
// of JPEG files as input and generates either 8-bit grayscale or packed 24-bit
// RGB images as output. It does not parse JFIF or Exif headers; all JPEG files
// are assumed to be either grayscale or YCbCr. CMYK or other color spaces are
// not supported. All YCbCr subsampling schemes with power-of-two ratios are
// supported, as are restart intervals. Progressive or lossless JPEG is not
// supported.
// Summed up, NanoJPEG should be able to decode all images from digital cameras
// and most common forms of other non-progressive JPEG images.
// The decoder is not optimized for speed, it's optimized for simplicity and
// small code. Image quality should be at a reasonable level. A bicubic chroma
// upsampling filter ensures that subsampled YCbCr images are rendered in
// decent quality. The decoder is not meant to deal with broken JPEG files in
// a graceful manner; if anything is wrong with the bitstream, decoding will
// simply fail.
// The code should work with every modern C compiler without problems and
// should not emit any warnings. It uses only (at least) 32-bit integer
// arithmetic and is supposed to be endianness independent and 64-bit clean.
// However, it is not thread-safe.
// COMPILE-TIME CONFIGURATION
// ==========================
//
// The following aspects of NanoJPEG can be controlled with preprocessor
// defines:
//
// _NJ_EXAMPLE_PROGRAM = Compile a main() function with an example
// program.
// _NJ_INCLUDE_HEADER_ONLY = Don't compile anything, just act as a header
// file for NanoJPEG. Example:
// #define _NJ_INCLUDE_HEADER_ONLY
// #include "nanojpeg.c"
// int main(void) {
// njInit();
// // your code here
// njDone();
// }
// NJ_USE_LIBC=1 = Use the malloc(), free(), memset() and memcpy()
// functions from the standard C library (default).
// NJ_USE_LIBC=0 = Don't use the standard C library. In this mode,
// external functions njAlloc(), njFreeMem(),
// njFillMem() and njCopyMem() need to be defined
// and implemented somewhere.
// NJ_USE_WIN32=0 = Normal mode (default).
// NJ_USE_WIN32=1 = If compiling with MSVC for Win32 and
// NJ_USE_LIBC=0, NanoJPEG will use its own
// implementations of the required C library
// functions (default if compiling with MSVC and
// NJ_USE_LIBC=0).
// NJ_CHROMA_FILTER=1 = Use the bicubic chroma upsampling filter
// (default).
// NJ_CHROMA_FILTER=0 = Use simple pixel repetition for chroma upsampling
// (bad quality, but faster and less code).
// API
// ===
//
// For API documentation, read the "header section" below.
// EXAMPLE
// =======
//
// A few pages below, you can find an example program that uses NanoJPEG to
// convert JPEG files into PGM or PPM. To compile it, use something like
// gcc -O3 -D_NJ_EXAMPLE_PROGRAM -o nanojpeg nanojpeg.c
// You may also add -std=c99 -Wall -Wextra -pedantic -Werror, if you want :)
// The only thing you might need is -Wno-shift-negative-value, because this
// code relies on the target machine using two's complement arithmetic, but
// the C standard does not, even though *any* practically useful machine
// nowadays uses two's complement.
///////////////////////////////////////////////////////////////////////////////
// HEADER SECTION //
// copy and pase this into nanojpeg.h if you want //
///////////////////////////////////////////////////////////////////////////////
#ifndef _NANOJPEG_H
#define _NANOJPEG_H
// Modified: Map libc-style free() and malloc() to their EFI equivalents....
#define free MyFreePool
#define malloc AllocatePool
#define memset(b, c, v) MyMemSet(b, v, c)
#define memcpy MyMemCpy
// nj_result_t: Result codes for njDecode().
typedef enum _nj_result {
NJ_OK = 0, // no error, decoding successful
NJ_NO_JPEG, // not a JPEG file
NJ_UNSUPPORTED, // unsupported format
NJ_OUT_OF_MEM, // out of memory
NJ_INTERNAL_ERR, // internal error
NJ_SYNTAX_ERROR, // syntax error
__NJ_FINISHED, // used internally, will never be reported
} nj_result_t;
// njInit: Initialize NanoJPEG.
// For safety reasons, this should be called at least one time before using
// using any of the other NanoJPEG functions.
// Returns 1 on success, 0 on failure.
int njInit(void);
// njDecode: Decode a JPEG image.
// Decodes a memory dump of a JPEG file into internal buffers.
// Parameters:
// jpeg = The pointer to the memory dump.
// size = The size of the JPEG file.
// Return value: The error code in case of failure, or NJ_OK (zero) on success.
nj_result_t njDecode(const void* jpeg, const int size);
// njGetWidth: Return the width (in pixels) of the most recently decoded
// image. If njDecode() failed, the result of njGetWidth() is undefined.
int njGetWidth(void);
// njGetHeight: Return the height (in pixels) of the most recently decoded
// image. If njDecode() failed, the result of njGetHeight() is undefined.
int njGetHeight(void);
// njIsColor: Return 1 if the most recently decoded image is a color image
// (RGB) or 0 if it is a grayscale image. If njDecode() failed, the result
// of njGetWidth() is undefined.
int njIsColor(void);
// njGetImage: Returns the decoded image data.
// Returns a pointer to the most recently image. The memory layout it byte-
// oriented, top-down, without any padding between lines. Pixels of color
// images will be stored as three consecutive bytes for the red, green and
// blue channels. This data format is thus compatible with the PGM or PPM
// file formats and the OpenGL texture formats GL_LUMINANCE8 or GL_RGB8.
// If njDecode() failed, the result of njGetImage() is undefined.
unsigned char* njGetImage(void);
// njGetImageSize: Returns the size (in bytes) of the image data returned
// by njGetImage(). If njDecode() failed, the result of njGetImageSize() is
// undefined.
int njGetImageSize(void);
// njDone: Uninitialize NanoJPEG.
// Resets NanoJPEG's internal state and frees all memory that has been
// allocated at run-time by NanoJPEG. It is still possible to decode another
// image after a njDone() call.
void njDone(void);
#endif//_NANOJPEG_H
///////////////////////////////////////////////////////////////////////////////
// CONFIGURATION SECTION //
// adjust the default settings for the NJ_ defines here //
///////////////////////////////////////////////////////////////////////////////
#ifndef NJ_USE_LIBC
#define NJ_USE_LIBC 1
#endif
#ifndef NJ_USE_WIN32
#ifdef _MSC_VER
#define NJ_USE_WIN32 (!NJ_USE_LIBC)
#else
#define NJ_USE_WIN32 0
#endif
#endif
#ifndef NJ_CHROMA_FILTER
#define NJ_CHROMA_FILTER 1
#endif
///////////////////////////////////////////////////////////////////////////////
// EXAMPLE PROGRAM //
// just define _NJ_EXAMPLE_PROGRAM to compile this (requires NJ_USE_LIBC) //
///////////////////////////////////////////////////////////////////////////////
#ifdef _NJ_EXAMPLE_PROGRAM
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char* argv[]) {
int size;
char *buf;
FILE *f;
if (argc < 2) {
printf("Usage: %s <input.jpg> [<output.ppm>]\n", argv[0]);
return 2;
}
f = fopen(argv[1], "rb");
if (!f) {
printf("Error opening the input file.\n");
return 1;
}
fseek(f, 0, SEEK_END);
size = (int) ftell(f);
buf = (char*) malloc(size);
fseek(f, 0, SEEK_SET);
size = (int) fread(buf, 1, size, f);
fclose(f);
njInit();
if (njDecode(buf, size)) {
free((void*)buf);
printf("Error decoding the input file.\n");
return 1;
}
free((void*)buf);
f = fopen((argc > 2) ? argv[2] : (njIsColor() ? "nanojpeg_out.ppm" : "nanojpeg_out.pgm"), "wb");
if (!f) {
printf("Error opening the output file.\n");
return 1;
}
fprintf(f, "P%d\n%d %d\n255\n", njIsColor() ? 6 : 5, njGetWidth(), njGetHeight());
fwrite(njGetImage(), 1, njGetImageSize(), f);
fclose(f);
njDone();
return 0;
}
#endif
///////////////////////////////////////////////////////////////////////////////
// IMPLEMENTATION SECTION //
// you may stop reading here //
///////////////////////////////////////////////////////////////////////////////
#ifndef _NJ_INCLUDE_HEADER_ONLY
#ifdef _MSC_VER
#define NJ_INLINE static __inline
#define NJ_FORCE_INLINE static __forceinline
#else
#define NJ_INLINE static inline
#define NJ_FORCE_INLINE static inline
#endif
#if NJ_USE_LIBC
#include <stdlib.h>
#include <string.h>
#define njAllocMem malloc
#define njFreeMem free
#define njFillMem memset
#define njCopyMem memcpy
#elif NJ_USE_WIN32
#include <windows.h>
#define njAllocMem(size) ((void*) LocalAlloc(LMEM_FIXED, (SIZE_T)(size)))
#define njFreeMem(block) ((void) LocalFree((HLOCAL) block))
NJ_INLINE void njFillMem(void* block, unsigned char value, int count) { __asm {
mov edi, block
mov al, value
mov ecx, count
rep stosb
} }
NJ_INLINE void njCopyMem(void* dest, const void* src, int count) { __asm {
mov edi, dest
mov esi, src
mov ecx, count
rep movsb
} }
#else
extern void* njAllocMem(int size);
extern void njFreeMem(void* block);
extern void njFillMem(void* block, unsigned char byte, int size);
extern void njCopyMem(void* dest, const void* src, int size);
#endif
typedef struct _nj_code {
unsigned char bits, code;
} nj_vlc_code_t;
typedef struct _nj_cmp {
int cid;
int ssx, ssy;
int width, height;
int stride;
int qtsel;
int actabsel, dctabsel;
int dcpred;
unsigned char *pixels;
} nj_component_t;
// Modified structure: Change vlctab[4][65536] to *vlctab[4] so as to minimize
// stack use. (The original code caused the refind_x64.efi binary to blow up
// from ~260KiB to ~790KiB!) This change, of course, also necessitates changes
// to the njInit() and njDone() functions, as well.
typedef struct _nj_ctx {
nj_result_t error;
const unsigned char *pos;
int size;
int length;
int width, height;
int mbwidth, mbheight;
int mbsizex, mbsizey;
int ncomp;
nj_component_t comp[3];
int qtused, qtavail;
unsigned char qtab[4][64];
nj_vlc_code_t *vlctab[4];
int buf, bufbits;
int block[64];
int rstinterval;
unsigned char *rgb;
} nj_context_t;
static nj_context_t nj;
nj_vlc_code_t *nj_vlctab[] = {NULL, NULL, NULL, NULL};
static const char njZZ[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18,
11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35,
42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45,
38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 };
NJ_FORCE_INLINE unsigned char njClip(const int x) {
return (x < 0) ? 0 : ((x > 0xFF) ? 0xFF : (unsigned char) x);
}
#define W1 2841
#define W2 2676
#define W3 2408
#define W5 1609
#define W6 1108
#define W7 565
NJ_INLINE void njRowIDCT(int* blk) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
if (!((x1 = blk[4] << 11)
| (x2 = blk[6])
| (x3 = blk[2])
| (x4 = blk[1])
| (x5 = blk[7])
| (x6 = blk[5])
| (x7 = blk[3])))
{
blk[0] = blk[1] = blk[2] = blk[3] = blk[4] = blk[5] = blk[6] = blk[7] = blk[0] << 3;
return;
}
x0 = (blk[0] << 11) + 128;
x8 = W7 * (x4 + x5);
x4 = x8 + (W1 - W7) * x4;
x5 = x8 - (W1 + W7) * x5;
x8 = W3 * (x6 + x7);
x6 = x8 - (W3 - W5) * x6;
x7 = x8 - (W3 + W5) * x7;
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2);
x2 = x1 - (W2 + W6) * x2;
x3 = x1 + (W2 - W6) * x3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
blk[0] = (x7 + x1) >> 8;
blk[1] = (x3 + x2) >> 8;
blk[2] = (x0 + x4) >> 8;
blk[3] = (x8 + x6) >> 8;
blk[4] = (x8 - x6) >> 8;
blk[5] = (x0 - x4) >> 8;
blk[6] = (x3 - x2) >> 8;
blk[7] = (x7 - x1) >> 8;
}
NJ_INLINE void njColIDCT(const int* blk, unsigned char *out, int stride) {
int x0, x1, x2, x3, x4, x5, x6, x7, x8;
if (!((x1 = blk[8*4] << 8)
| (x2 = blk[8*6])
| (x3 = blk[8*2])
| (x4 = blk[8*1])
| (x5 = blk[8*7])
| (x6 = blk[8*5])
| (x7 = blk[8*3])))
{
x1 = njClip(((blk[0] + 32) >> 6) + 128);
for (x0 = 8; x0; --x0) {
*out = (unsigned char) x1;
out += stride;
}
return;
}
x0 = (blk[0] << 8) + 8192;
x8 = W7 * (x4 + x5) + 4;
x4 = (x8 + (W1 - W7) * x4) >> 3;
x5 = (x8 - (W1 + W7) * x5) >> 3;
x8 = W3 * (x6 + x7) + 4;
x6 = (x8 - (W3 - W5) * x6) >> 3;
x7 = (x8 - (W3 + W5) * x7) >> 3;
x8 = x0 + x1;
x0 -= x1;
x1 = W6 * (x3 + x2) + 4;
x2 = (x1 - (W2 + W6) * x2) >> 3;
x3 = (x1 + (W2 - W6) * x3) >> 3;
x1 = x4 + x6;
x4 -= x6;
x6 = x5 + x7;
x5 -= x7;
x7 = x8 + x3;
x8 -= x3;
x3 = x0 + x2;
x0 -= x2;
x2 = (181 * (x4 + x5) + 128) >> 8;
x4 = (181 * (x4 - x5) + 128) >> 8;
*out = njClip(((x7 + x1) >> 14) + 128); out += stride;
*out = njClip(((x3 + x2) >> 14) + 128); out += stride;
*out = njClip(((x0 + x4) >> 14) + 128); out += stride;
*out = njClip(((x8 + x6) >> 14) + 128); out += stride;
*out = njClip(((x8 - x6) >> 14) + 128); out += stride;
*out = njClip(((x0 - x4) >> 14) + 128); out += stride;
*out = njClip(((x3 - x2) >> 14) + 128); out += stride;
*out = njClip(((x7 - x1) >> 14) + 128);
}
#define njThrow(e) do { nj.error = e; return; } while (0)
#define njCheckError() do { if (nj.error) return; } while (0)
static int njShowBits(int bits) {
unsigned char newbyte;
if (!bits) return 0;
while (nj.bufbits < bits) {
if (nj.size <= 0) {
nj.buf = (nj.buf << 8) | 0xFF;
nj.bufbits += 8;
continue;
}
newbyte = *nj.pos++;
nj.size--;
nj.bufbits += 8;
nj.buf = (nj.buf << 8) | newbyte;
if (newbyte == 0xFF) {
if (nj.size) {
unsigned char marker = *nj.pos++;
nj.size--;
switch (marker) {
case 0x00:
case 0xFF:
break;
case 0xD9: nj.size = 0; break;
default:
if ((marker & 0xF8) != 0xD0)
nj.error = NJ_SYNTAX_ERROR;
else {
nj.buf = (nj.buf << 8) | marker;
nj.bufbits += 8;
}
}
} else
nj.error = NJ_SYNTAX_ERROR;
}
}
return (nj.buf >> (nj.bufbits - bits)) & ((1 << bits) - 1);
}
NJ_INLINE void njSkipBits(int bits) {
if (nj.bufbits < bits)
(void) njShowBits(bits);
nj.bufbits -= bits;
}
NJ_INLINE int njGetBits(int bits) {
int res = njShowBits(bits);
njSkipBits(bits);
return res;
}
NJ_INLINE void njByteAlign(void) {
nj.bufbits &= 0xF8;
}
static void njSkip(int count) {
nj.pos += count;
nj.size -= count;
nj.length -= count;
if (nj.size < 0) nj.error = NJ_SYNTAX_ERROR;
}
NJ_INLINE unsigned short njDecode16(const unsigned char *pos) {
return (pos[0] << 8) | pos[1];
}
static void njDecodeLength(void) {
if (nj.size < 2) njThrow(NJ_SYNTAX_ERROR);
nj.length = njDecode16(nj.pos);
if (nj.length > nj.size) njThrow(NJ_SYNTAX_ERROR);
njSkip(2);
}
NJ_INLINE void njSkipMarker(void) {
njDecodeLength();
njSkip(nj.length);
}
NJ_INLINE void njDecodeSOF(void) {
int i, ssxmax = 0, ssymax = 0;
nj_component_t* c;
njDecodeLength();
njCheckError();
if (nj.length < 9) njThrow(NJ_SYNTAX_ERROR);
if (nj.pos[0] != 8) njThrow(NJ_UNSUPPORTED);
nj.height = njDecode16(nj.pos+1);
nj.width = njDecode16(nj.pos+3);
if (!nj.width || !nj.height) njThrow(NJ_SYNTAX_ERROR);
nj.ncomp = nj.pos[5];
njSkip(6);
switch (nj.ncomp) {
case 1:
case 3:
break;
default:
njThrow(NJ_UNSUPPORTED);
}
if (nj.length < (nj.ncomp * 3)) njThrow(NJ_SYNTAX_ERROR);
for (i = 0, c = nj.comp; i < nj.ncomp; ++i, ++c) {
c->cid = nj.pos[0];
if (!(c->ssx = nj.pos[1] >> 4)) njThrow(NJ_SYNTAX_ERROR);
if (c->ssx & (c->ssx - 1)) njThrow(NJ_UNSUPPORTED); // non-power of two
if (!(c->ssy = nj.pos[1] & 15)) njThrow(NJ_SYNTAX_ERROR);
if (c->ssy & (c->ssy - 1)) njThrow(NJ_UNSUPPORTED); // non-power of two
if ((c->qtsel = nj.pos[2]) & 0xFC) njThrow(NJ_SYNTAX_ERROR);
njSkip(3);
nj.qtused |= 1 << c->qtsel;
if (c->ssx > ssxmax) ssxmax = c->ssx;
if (c->ssy > ssymax) ssymax = c->ssy;
}
if (nj.ncomp == 1) {
c = nj.comp;
c->ssx = c->ssy = ssxmax = ssymax = 1;
}
nj.mbsizex = ssxmax << 3;
nj.mbsizey = ssymax << 3;
nj.mbwidth = (nj.width + nj.mbsizex - 1) / nj.mbsizex;
nj.mbheight = (nj.height + nj.mbsizey - 1) / nj.mbsizey;
for (i = 0, c = nj.comp; i < nj.ncomp; ++i, ++c) {
c->width = (nj.width * c->ssx + ssxmax - 1) / ssxmax;
c->height = (nj.height * c->ssy + ssymax - 1) / ssymax;
c->stride = nj.mbwidth * c->ssx << 3;
if (((c->width < 3) && (c->ssx != ssxmax)) || ((c->height < 3) && (c->ssy != ssymax))) njThrow(NJ_UNSUPPORTED);
if (!(c->pixels = (unsigned char*) njAllocMem(c->stride * nj.mbheight * c->ssy << 3))) njThrow(NJ_OUT_OF_MEM);
}
if (nj.ncomp == 3) {
nj.rgb = (unsigned char*) njAllocMem(nj.width * nj.height * nj.ncomp);
if (!nj.rgb) njThrow(NJ_OUT_OF_MEM);
}
njSkip(nj.length);
}
NJ_INLINE void njDecodeDHT(void) {
int codelen, currcnt, remain, spread, i, j;
nj_vlc_code_t *vlc;
static unsigned char counts[16];
njDecodeLength();
njCheckError();
while (nj.length >= 17) {
i = nj.pos[0];
if (i & 0xEC) njThrow(NJ_SYNTAX_ERROR);
if (i & 0x02) njThrow(NJ_UNSUPPORTED);
i = (i | (i >> 3)) & 3; // combined DC/AC + tableid value
for (codelen = 1; codelen <= 16; ++codelen)
counts[codelen - 1] = nj.pos[codelen];
njSkip(17);
vlc = &nj.vlctab[i][0];
remain = spread = 65536;
for (codelen = 1; codelen <= 16; ++codelen) {
spread >>= 1;
currcnt = counts[codelen - 1];
if (!currcnt) continue;
if (nj.length < currcnt) njThrow(NJ_SYNTAX_ERROR);
remain -= currcnt << (16 - codelen);
if (remain < 0) njThrow(NJ_SYNTAX_ERROR);
for (i = 0; i < currcnt; ++i) {
register unsigned char code = nj.pos[i];
for (j = spread; j; --j) {
vlc->bits = (unsigned char) codelen;
vlc->code = code;
++vlc;
}
}
njSkip(currcnt);
}
while (remain--) {
vlc->bits = 0;
++vlc;
}
}
if (nj.length) njThrow(NJ_SYNTAX_ERROR);
}
NJ_INLINE void njDecodeDQT(void) {
int i;
unsigned char *t;
njDecodeLength();
njCheckError();
while (nj.length >= 65) {
i = nj.pos[0];
if (i & 0xFC) njThrow(NJ_SYNTAX_ERROR);
nj.qtavail |= 1 << i;
t = &nj.qtab[i][0];
for (i = 0; i < 64; ++i)
t[i] = nj.pos[i + 1];
njSkip(65);
}
if (nj.length) njThrow(NJ_SYNTAX_ERROR);
}
NJ_INLINE void njDecodeDRI(void) {
njDecodeLength();
njCheckError();
if (nj.length < 2) njThrow(NJ_SYNTAX_ERROR);
nj.rstinterval = njDecode16(nj.pos);
njSkip(nj.length);
}
static int njGetVLC(nj_vlc_code_t* vlc, unsigned char* code) {
int value = njShowBits(16);
int bits = vlc[value].bits;
if (!bits) { nj.error = NJ_SYNTAX_ERROR; return 0; }
njSkipBits(bits);
value = vlc[value].code;
if (code) *code = (unsigned char) value;
bits = value & 15;
if (!bits) return 0;
value = njGetBits(bits);
if (value < (1 << (bits - 1)))
value += ((-1) << bits) + 1;
return value;
}
NJ_INLINE void njDecodeBlock(nj_component_t* c, unsigned char* out) {
unsigned char code = 0;
int value, coef = 0;
njFillMem(nj.block, 0, sizeof(nj.block));
c->dcpred += njGetVLC(&nj.vlctab[c->dctabsel][0], NULL);
nj.block[0] = (c->dcpred) * nj.qtab[c->qtsel][0];
do {
value = njGetVLC(&nj.vlctab[c->actabsel][0], &code);
if (!code) break; // EOB
if (!(code & 0x0F) && (code != 0xF0)) njThrow(NJ_SYNTAX_ERROR);
coef += (code >> 4) + 1;
if (coef > 63) njThrow(NJ_SYNTAX_ERROR);
nj.block[(int) njZZ[coef]] = value * nj.qtab[c->qtsel][coef];
} while (coef < 63);
for (coef = 0; coef < 64; coef += 8)
njRowIDCT(&nj.block[coef]);
for (coef = 0; coef < 8; ++coef)
njColIDCT(&nj.block[coef], &out[coef], c->stride);
}
NJ_INLINE void njDecodeScan(void) {
int i, mbx, mby, sbx, sby;
int rstcount = nj.rstinterval, nextrst = 0;
nj_component_t* c;
njDecodeLength();
njCheckError();
if (nj.length < (4 + 2 * nj.ncomp)) njThrow(NJ_SYNTAX_ERROR);
if (nj.pos[0] != nj.ncomp) njThrow(NJ_UNSUPPORTED);
njSkip(1);
for (i = 0, c = nj.comp; i < nj.ncomp; ++i, ++c) {
if (nj.pos[0] != c->cid) njThrow(NJ_SYNTAX_ERROR);
if (nj.pos[1] & 0xEE) njThrow(NJ_SYNTAX_ERROR);
c->dctabsel = nj.pos[1] >> 4;
c->actabsel = (nj.pos[1] & 1) | 2;
njSkip(2);
}
if (nj.pos[0] || (nj.pos[1] != 63) || nj.pos[2]) njThrow(NJ_UNSUPPORTED);
njSkip(nj.length);
for (mbx = mby = 0;;) {
for (i = 0, c = nj.comp; i < nj.ncomp; ++i, ++c)
for (sby = 0; sby < c->ssy; ++sby)
for (sbx = 0; sbx < c->ssx; ++sbx) {
njDecodeBlock(c, &c->pixels[((mby * c->ssy + sby) * c->stride + mbx * c->ssx + sbx) << 3]);
njCheckError();
}
if (++mbx >= nj.mbwidth) {
mbx = 0;
if (++mby >= nj.mbheight) break;
}
if (nj.rstinterval && !(--rstcount)) {
njByteAlign();
i = njGetBits(16);
if (((i & 0xFFF8) != 0xFFD0) || ((i & 7) != nextrst)) njThrow(NJ_SYNTAX_ERROR);
nextrst = (nextrst + 1) & 7;
rstcount = nj.rstinterval;
for (i = 0; i < 3; ++i)
nj.comp[i].dcpred = 0;
}
}
nj.error = __NJ_FINISHED;
}
#if NJ_CHROMA_FILTER
#define CF4A (-9)
#define CF4B (111)
#define CF4C (29)
#define CF4D (-3)
#define CF3A (28)
#define CF3B (109)
#define CF3C (-9)
#define CF3X (104)
#define CF3Y (27)
#define CF3Z (-3)
#define CF2A (139)
#define CF2B (-11)
#define CF(x) njClip(((x) + 64) >> 7)
NJ_INLINE void njUpsampleH(nj_component_t* c) {
const int xmax = c->width - 3;
unsigned char *out, *lin, *lout;
int x, y;
out = (unsigned char*) njAllocMem((c->width * c->height) << 1);
if (!out) njThrow(NJ_OUT_OF_MEM);
lin = c->pixels;
lout = out;
for (y = c->height; y; --y) {
lout[0] = CF(CF2A * lin[0] + CF2B * lin[1]);
lout[1] = CF(CF3X * lin[0] + CF3Y * lin[1] + CF3Z * lin[2]);
lout[2] = CF(CF3A * lin[0] + CF3B * lin[1] + CF3C * lin[2]);
for (x = 0; x < xmax; ++x) {
lout[(x << 1) + 3] = CF(CF4A * lin[x] + CF4B * lin[x + 1] + CF4C * lin[x + 2] + CF4D * lin[x + 3]);
lout[(x << 1) + 4] = CF(CF4D * lin[x] + CF4C * lin[x + 1] + CF4B * lin[x + 2] + CF4A * lin[x + 3]);
}
lin += c->stride;
lout += c->width << 1;
lout[-3] = CF(CF3A * lin[-1] + CF3B * lin[-2] + CF3C * lin[-3]);
lout[-2] = CF(CF3X * lin[-1] + CF3Y * lin[-2] + CF3Z * lin[-3]);
lout[-1] = CF(CF2A * lin[-1] + CF2B * lin[-2]);
}
c->width <<= 1;
c->stride = c->width;
njFreeMem((void*)c->pixels);
c->pixels = out;
}
NJ_INLINE void njUpsampleV(nj_component_t* c) {
const int w = c->width, s1 = c->stride, s2 = s1 + s1;
unsigned char *out, *cin, *cout;
int x, y;
out = (unsigned char*) njAllocMem((c->width * c->height) << 1);
if (!out) njThrow(NJ_OUT_OF_MEM);
for (x = 0; x < w; ++x) {
cin = &c->pixels[x];
cout = &out[x];
*cout = CF(CF2A * cin[0] + CF2B * cin[s1]); cout += w;
*cout = CF(CF3X * cin[0] + CF3Y * cin[s1] + CF3Z * cin[s2]); cout += w;
*cout = CF(CF3A * cin[0] + CF3B * cin[s1] + CF3C * cin[s2]); cout += w;
cin += s1;
for (y = c->height - 3; y; --y) {
*cout = CF(CF4A * cin[-s1] + CF4B * cin[0] + CF4C * cin[s1] + CF4D * cin[s2]); cout += w;
*cout = CF(CF4D * cin[-s1] + CF4C * cin[0] + CF4B * cin[s1] + CF4A * cin[s2]); cout += w;
cin += s1;
}
cin += s1;
*cout = CF(CF3A * cin[0] + CF3B * cin[-s1] + CF3C * cin[-s2]); cout += w;
*cout = CF(CF3X * cin[0] + CF3Y * cin[-s1] + CF3Z * cin[-s2]); cout += w;
*cout = CF(CF2A * cin[0] + CF2B * cin[-s1]);
}
c->height <<= 1;
c->stride = c->width;
njFreeMem((void*) c->pixels);
c->pixels = out;
}
#else
NJ_INLINE void njUpsample(nj_component_t* c) {
int x, y, xshift = 0, yshift = 0;
unsigned char *out, *lin, *lout;
while (c->width < nj.width) { c->width <<= 1; ++xshift; }
while (c->height < nj.height) { c->height <<= 1; ++yshift; }
out = (unsigned char*) njAllocMem(c->width * c->height);
if (!out) njThrow(NJ_OUT_OF_MEM);
lin = c->pixels;
lout = out;
for (y = 0; y < c->height; ++y) {
lin = &c->pixels[(y >> yshift) * c->stride];
for (x = 0; x < c->width; ++x)
lout[x] = lin[x >> xshift];
lout += c->width;
}
c->stride = c->width;
njFreeMem((void*) c->pixels);
c->pixels = out;
}
#endif
NJ_INLINE void njConvert(void) {
int i;
nj_component_t* c;
for (i = 0, c = nj.comp; i < nj.ncomp; ++i, ++c) {
#if NJ_CHROMA_FILTER
while ((c->width < nj.width) || (c->height < nj.height)) {
if (c->width < nj.width) njUpsampleH(c);
njCheckError();
if (c->height < nj.height) njUpsampleV(c);
njCheckError();
}
#else
if ((c->width < nj.width) || (c->height < nj.height))
njUpsample(c);
#endif
if ((c->width < nj.width) || (c->height < nj.height)) njThrow(NJ_INTERNAL_ERR);
}
if (nj.ncomp == 3) {
// convert to RGB
int x, yy;
unsigned char *prgb = nj.rgb;
const unsigned char *py = nj.comp[0].pixels;
const unsigned char *pcb = nj.comp[1].pixels;
const unsigned char *pcr = nj.comp[2].pixels;
for (yy = nj.height; yy; --yy) {
for (x = 0; x < nj.width; ++x) {
register int y = py[x] << 8;
register int cb = pcb[x] - 128;
register int cr = pcr[x] - 128;
*prgb++ = njClip((y + 359 * cr + 128) >> 8);
*prgb++ = njClip((y - 88 * cb - 183 * cr + 128) >> 8);
*prgb++ = njClip((y + 454 * cb + 128) >> 8);
}
py += nj.comp[0].stride;
pcb += nj.comp[1].stride;
pcr += nj.comp[2].stride;
}
} else if (nj.comp[0].width != nj.comp[0].stride) {
// grayscale -> only remove stride
unsigned char *pin = &nj.comp[0].pixels[nj.comp[0].stride];
unsigned char *pout = &nj.comp[0].pixels[nj.comp[0].width];
int y;
for (y = nj.comp[0].height - 1; y; --y) {
njCopyMem(pout, pin, nj.comp[0].width);
pin += nj.comp[0].stride;
pout += nj.comp[0].width;
}
nj.comp[0].stride = nj.comp[0].width;
}
}
// Modified njInit(); uses dynamic assignment of nj.vlctab[i] variable, to
// avoid a 3x increase in binary size caused by the original static (stack)
// definition.
// Returns 1 on success, 0 on failure. DO NOT USE SUBSEQUENT FUNCTIONS IF
// njInit() FAILS!
int njInit(void) {
int i, retval = 1;
njFillMem(&nj, 0, sizeof(nj_context_t));
for (i = 0; i < 4; i++) {
if (!nj_vlctab[i]) {
nj_vlctab[i] = njAllocMem(sizeof (nj_vlc_code_t) * 65536);
}
if (nj_vlctab[i]) {
nj.vlctab[i] = nj_vlctab[i];
njFillMem(nj.vlctab[i], 0, sizeof (nj_vlc_code_t) * 65536);
}
else {
retval = 0;
}
} // for
if (retval == 0) {
for (i = 0; i < 4; i++) {
MyFreePool(nj_vlctab[i]);
nj_vlctab[i] = NULL;
} // for
} // if
return retval;
}
// Modified njDone(); uses dynamic assignment of nj.vlctab[i] variable, to
// avoid a 3x increase in binary size caused by the original static (stack)
// definition.
void njDone(void) {
int i;
for (i = 0; i < 3; ++i)
if (nj.comp[i].pixels) njFreeMem((void*) nj.comp[i].pixels);
if (nj.rgb) njFreeMem((void*) nj.rgb);
for (i = 0; i < 4; i++) {
njFreeMem(nj_vlctab[i]);
nj_vlctab[i] = NULL;
}
njInit();
}
nj_result_t njDecode(const void* jpeg, const int size) {
njDone();
nj.pos = (const unsigned char*) jpeg;
nj.size = size & 0x7FFFFFFF;
if (nj.size < 2) return NJ_NO_JPEG;
if ((nj.pos[0] ^ 0xFF) | (nj.pos[1] ^ 0xD8)) return NJ_NO_JPEG;
njSkip(2);
while (!nj.error) {
if ((nj.size < 2) || (nj.pos[0] != 0xFF)) return NJ_SYNTAX_ERROR;
njSkip(2);
switch (nj.pos[-1]) {
case 0xC0: njDecodeSOF(); break;
case 0xC4: njDecodeDHT(); break;
case 0xDB: njDecodeDQT(); break;
case 0xDD: njDecodeDRI(); break;
case 0xDA: njDecodeScan(); break;
case 0xFE: njSkipMarker(); break;
default:
if ((nj.pos[-1] & 0xF0) == 0xE0)
njSkipMarker();
else
return NJ_UNSUPPORTED;
}
}
if (nj.error != __NJ_FINISHED) return nj.error;
nj.error = NJ_OK;
njConvert();
return nj.error;
}
int njGetWidth(void) { return nj.width; }
int njGetHeight(void) { return nj.height; }
int njIsColor(void) { return (nj.ncomp != 1); }
unsigned char* njGetImage(void) { return (nj.ncomp == 1) ? nj.comp[0].pixels : nj.rgb; }
int njGetImageSize(void) { return nj.width * nj.height * nj.ncomp; }
#endif // _NJ_INCLUDE_HEADER_ONLY
|