1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
|
/*
* gptsync/gptsync.c
* Platform-independent code for syncing GPT and MBR
*
* Copyright (c) 2006-2007 Christoph Pfisterer
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* * Neither the name of Christoph Pfisterer nor the names of the
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "gptsync.h"
#include "syslinux_mbr.h"
//
// MBR functions
//
static UINTN check_mbr(VOID)
{
UINTN i, k;
// check each entry
for (i = 0; i < mbr_part_count; i++) {
// check for overlap
for (k = 0; k < mbr_part_count; k++) {
if (k != i && !(mbr_parts[i].start_lba > mbr_parts[k].end_lba || mbr_parts[k].start_lba > mbr_parts[i].end_lba)) {
Print(L"Status: MBR partition table is invalid, partitions overlap.\n");
return 1;
}
}
// check for extended partitions
if (mbr_parts[i].mbr_type == 0x05 || mbr_parts[i].mbr_type == 0x0f || mbr_parts[i].mbr_type == 0x85) {
Print(L"Status: Extended partition found in MBR table, will not touch this disk.\n",
gpt_parts[i].gpt_parttype->name);
return 1;
}
}
return 0;
}
static UINTN write_mbr(VOID)
{
UINTN status;
UINTN i, k;
UINT8 active;
UINT64 lba;
MBR_PARTITION_INFO *table;
BOOLEAN have_bootcode;
Print(L"\nWriting new MBR...\n");
// read MBR data
status = read_sector(0, sector);
if (status != 0)
return status;
// write partition table
*((UINT16 *)(sector + 510)) = 0xaa55;
table = (MBR_PARTITION_INFO *)(sector + 446);
active = 0x80;
for (i = 0; i < 4; i++) {
for (k = 0; k < new_mbr_part_count; k++) {
if (new_mbr_parts[k].index == i)
break;
}
if (k >= new_mbr_part_count) {
// unused entry
table[i].flags = 0;
table[i].start_chs[0] = 0;
table[i].start_chs[1] = 0;
table[i].start_chs[2] = 0;
table[i].type = 0;
table[i].end_chs[0] = 0;
table[i].end_chs[1] = 0;
table[i].end_chs[2] = 0;
table[i].start_lba = 0;
table[i].size = 0;
} else {
if (new_mbr_parts[k].active) {
table[i].flags = active;
active = 0x00;
} else
table[i].flags = 0x00;
table[i].start_chs[0] = 0xfe;
table[i].start_chs[1] = 0xff;
table[i].start_chs[2] = 0xff;
table[i].type = new_mbr_parts[k].mbr_type;
table[i].end_chs[0] = 0xfe;
table[i].end_chs[1] = 0xff;
table[i].end_chs[2] = 0xff;
lba = new_mbr_parts[k].start_lba;
if (lba > 0xffffffffULL) {
Print(L"Warning: Partition %d starts beyond 2 TiB limit\n", i+1);
lba = 0xffffffffULL;
}
table[i].start_lba = (UINT32)lba;
lba = new_mbr_parts[k].end_lba + 1 - new_mbr_parts[k].start_lba;
if (lba > 0xffffffffULL) {
Print(L"Warning: Partition %d extends beyond 2 TiB limit\n", i+1);
lba = 0xffffffffULL;
}
table[i].size = (UINT32)lba;
}
}
// add boot code if necessary
have_bootcode = FALSE;
for (i = 0; i < MBR_BOOTCODE_SIZE; i++) {
if (sector[i] != 0) {
have_bootcode = TRUE;
break;
}
}
if (!have_bootcode) {
// no boot code found in the MBR, add the syslinux MBR code
SetMem(sector, MBR_BOOTCODE_SIZE, 0);
CopyMem(sector, syslinux_mbr, SYSLINUX_MBR_SIZE);
}
// write MBR data
status = write_sector(0, sector);
if (status != 0)
return status;
Print(L"MBR updated successfully!\n");
return 0;
}
//
// GPT functions
//
static UINTN check_gpt(VOID)
{
UINTN i, k;
BOOLEAN found_data_parts;
if (gpt_part_count == 0) {
Print(L"Status: No GPT partition table, no need to sync.\n");
return 1;
}
// check each entry
found_data_parts = FALSE;
for (i = 0; i < gpt_part_count; i++) {
// check sanity
if (gpt_parts[i].end_lba < gpt_parts[i].start_lba) {
Print(L"Status: GPT partition table is invalid.\n");
return 1;
}
// check for overlap
for (k = 0; k < gpt_part_count; k++) {
if (k != i && !(gpt_parts[i].start_lba > gpt_parts[k].end_lba || gpt_parts[k].start_lba > gpt_parts[i].end_lba)) {
Print(L"Status: GPT partition table is invalid, partitions overlap.\n");
return 1;
}
}
// check for partitions kind
if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_FATAL) {
Print(L"Status: GPT partition of type '%s' found, will not touch this disk.\n",
gpt_parts[i].gpt_parttype->name);
return 1;
}
if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_DATA ||
gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA)
found_data_parts = TRUE;
}
if (!found_data_parts) {
Print(L"Status: GPT partition table has no data partitions, no need to sync.\n");
return 1;
}
return 0;
}
//
// compare GPT and MBR tables
//
#define ACTION_NONE (0)
#define ACTION_NOP (1)
#define ACTION_REWRITE (2)
static UINTN analyze(VOID)
{
UINTN action;
UINTN i, k, iter, count_active, detected_parttype;
CHARN *fsname;
UINT64 min_start_lba;
UINTN status;
BOOLEAN have_esp;
new_mbr_part_count = 0;
// determine correct MBR types for GPT partitions
if (gpt_part_count == 0) {
Print(L"Status: No GPT partitions defined, nothing to sync.\n");
return 0;
}
have_esp = FALSE;
for (i = 0; i < gpt_part_count; i++) {
gpt_parts[i].mbr_type = gpt_parts[i].gpt_parttype->mbr_type;
if (gpt_parts[i].gpt_parttype->kind == GPT_KIND_BASIC_DATA) {
// Basic Data: need to look at data in the partition
status = detect_mbrtype_fs(gpt_parts[i].start_lba, &detected_parttype, &fsname);
if (detected_parttype)
gpt_parts[i].mbr_type = detected_parttype;
else
gpt_parts[i].mbr_type = 0x0b; // fallback: FAT32
} else if (gpt_parts[i].mbr_type == 0xef) {
// EFI System Partition: GNU parted can put this on any partition,
// need to detect file systems
status = detect_mbrtype_fs(gpt_parts[i].start_lba, &detected_parttype, &fsname);
if (!have_esp && (detected_parttype == 0x01 || detected_parttype == 0x0e || detected_parttype == 0x0c))
; // seems to be a legitimate ESP, don't change
else if (detected_parttype)
gpt_parts[i].mbr_type = detected_parttype;
else if (have_esp) // make sure there's no more than one ESP per disk
gpt_parts[i].mbr_type = 0x83; // fallback: Linux
}
// NOTE: mbr_type may still be 0 if content detection fails for exotic GPT types or file systems
if (gpt_parts[i].mbr_type == 0xef)
have_esp = TRUE;
}
// check for common scenarios
action = ACTION_NONE;
if (mbr_part_count == 0) {
// current MBR is empty
action = ACTION_REWRITE;
} else if (mbr_part_count == 1 && mbr_parts[0].mbr_type == 0xee) {
// MBR has just the EFI Protective partition (i.e. untouched)
action = ACTION_REWRITE;
}
if (action == ACTION_NONE && mbr_part_count > 0) {
if (mbr_parts[0].mbr_type == 0xee &&
gpt_parts[0].mbr_type == 0xef &&
mbr_parts[0].start_lba == 1 &&
mbr_parts[0].end_lba == gpt_parts[0].end_lba) {
// The Apple Way, "EFI Protective" covering the tables and the ESP
action = ACTION_NOP;
if ((mbr_part_count != gpt_part_count && gpt_part_count <= 4) ||
(mbr_part_count != 4 && gpt_part_count > 4)) {
// number of partitions has changed
action = ACTION_REWRITE;
} else {
// check partition ranges and types
for (i = 1; i < mbr_part_count; i++) {
if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
mbr_parts[i].end_lba != gpt_parts[i].end_lba ||
(gpt_parts[i].mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].mbr_type))
// position or type has changed
action = ACTION_REWRITE;
}
}
// check number of active partitions
count_active = 0;
for (i = 0; i < mbr_part_count; i++)
if (mbr_parts[i].active)
count_active++;
if (count_active!= 1)
action = ACTION_REWRITE;
}
}
if (action == ACTION_NONE && mbr_part_count > 0 && mbr_parts[0].mbr_type == 0xef) {
// The XOM Way, all partitions mirrored 1:1
action = ACTION_REWRITE;
// check partition ranges and types
for (i = 0; i < mbr_part_count; i++) {
if (mbr_parts[i].start_lba != gpt_parts[i].start_lba ||
mbr_parts[i].end_lba != gpt_parts[i].end_lba ||
(gpt_parts[i].mbr_type && mbr_parts[i].mbr_type != gpt_parts[i].mbr_type))
// position or type has changed -> better don't touch
action = ACTION_NONE;
}
}
if (action == ACTION_NOP) {
Print(L"Status: Tables are synchronized, no need to sync.\n");
return 0;
} else if (action == ACTION_REWRITE) {
Print(L"Status: MBR table must be updated.\n");
} else {
Print(L"Status: Analysis inconclusive, will not touch this disk.\n");
return 1;
}
// generate the new table
// first entry: EFI Protective
new_mbr_parts[0].index = 0;
new_mbr_parts[0].start_lba = 1;
new_mbr_parts[0].mbr_type = 0xee;
new_mbr_part_count = 1;
if (gpt_parts[0].mbr_type == 0xef) {
new_mbr_parts[0].end_lba = gpt_parts[0].end_lba;
i = 1;
} else {
min_start_lba = gpt_parts[0].start_lba;
for (k = 0; k < gpt_part_count; k++) {
if (min_start_lba > gpt_parts[k].start_lba)
min_start_lba = gpt_parts[k].start_lba;
}
new_mbr_parts[0].end_lba = min_start_lba - 1;
i = 0;
}
// add other GPT partitions until the table is full
// TODO: in the future, prioritize partitions by kind
for (; i < gpt_part_count && new_mbr_part_count < 4; i++) {
new_mbr_parts[new_mbr_part_count].index = new_mbr_part_count;
new_mbr_parts[new_mbr_part_count].start_lba = gpt_parts[i].start_lba;
new_mbr_parts[new_mbr_part_count].end_lba = gpt_parts[i].end_lba;
new_mbr_parts[new_mbr_part_count].mbr_type = gpt_parts[i].mbr_type;
new_mbr_parts[new_mbr_part_count].active = FALSE;
// find matching partition in the old MBR table
for (k = 0; k < mbr_part_count; k++) {
if (mbr_parts[k].start_lba == gpt_parts[i].start_lba) {
// keep type if not detected
if (new_mbr_parts[new_mbr_part_count].mbr_type == 0)
new_mbr_parts[new_mbr_part_count].mbr_type = mbr_parts[k].mbr_type;
// keep active flag
new_mbr_parts[new_mbr_part_count].active = mbr_parts[k].active;
break;
}
}
if (new_mbr_parts[new_mbr_part_count].mbr_type == 0)
// final fallback: set to a (hopefully) unused type
new_mbr_parts[new_mbr_part_count].mbr_type = 0xc0;
new_mbr_part_count++;
}
// make sure there's exactly one active partition
for (iter = 0; iter < 3; iter++) {
// check
count_active = 0;
for (i = 0; i < new_mbr_part_count; i++)
if (new_mbr_parts[i].active)
count_active++;
if (count_active == 1)
break;
// set active on the first matching partition
if (count_active == 0) {
for (i = 0; i < new_mbr_part_count; i++) {
if ((iter >= 0 && (new_mbr_parts[i].mbr_type == 0x07 || // NTFS
new_mbr_parts[i].mbr_type == 0x0b || // FAT32
new_mbr_parts[i].mbr_type == 0x0c)) || // FAT32 (LBA)
(iter >= 1 && (new_mbr_parts[i].mbr_type == 0x83)) || // Linux
(iter >= 2 && i > 0)) {
new_mbr_parts[i].active = TRUE;
break;
}
}
} else if (count_active > 1 && iter == 0) {
// too many active partitions, try deactivating the ESP / EFI Protective entry
if ((new_mbr_parts[0].mbr_type == 0xee || new_mbr_parts[0].mbr_type == 0xef) &&
new_mbr_parts[0].active) {
new_mbr_parts[0].active = FALSE;
}
} else if (count_active > 1 && iter > 0) {
// too many active partitions, deactivate all but the first one
count_active = 0;
for (i = 0; i < new_mbr_part_count; i++)
if (new_mbr_parts[i].active) {
if (count_active > 0)
new_mbr_parts[i].active = FALSE;
count_active++;
}
}
}
// dump table
Print(L"\nProposed new MBR partition table:\n");
Print(L" # A Start LBA End LBA Type\n");
for (i = 0; i < new_mbr_part_count; i++) {
Print(L" %d %s %12lld %12lld %02x %s\n",
new_mbr_parts[i].index + 1,
new_mbr_parts[i].active ? STR("*") : STR(" "),
new_mbr_parts[i].start_lba,
new_mbr_parts[i].end_lba,
new_mbr_parts[i].mbr_type,
mbr_parttype_name(new_mbr_parts[i].mbr_type));
}
return 0;
}
//
// sync algorithm entry point
//
UINTN gptsync(VOID)
{
UINTN status = 0;
UINTN status_gpt, status_mbr;
BOOLEAN proceed = FALSE;
// get full information from disk
status_gpt = read_gpt();
status_mbr = read_mbr();
if (status_gpt != 0 || status_mbr != 0)
return (status_gpt || status_mbr);
// cross-check current situation
Print(L"\n");
status = check_gpt(); // check GPT for consistency
if (status != 0)
return status;
status = check_mbr(); // check MBR for consistency
if (status != 0)
return status;
status = analyze(); // analyze the situation & compose new MBR table
if (status != 0)
return status;
if (new_mbr_part_count == 0)
return status;
// offer user the choice what to do
status = input_boolean(STR("\nMay I update the MBR as printed above? [y/N] "), &proceed);
if (status != 0 || proceed != TRUE)
return status;
// adjust the MBR and write it back
status = write_mbr();
if (status != 0)
return status;
return status;
}
|