File: fsw_reiserfs.c

package info (click to toggle)
refit 0.14-2
  • links: PTS
  • area: main
  • in suites: squeeze, wheezy
  • size: 2,840 kB
  • ctags: 3,282
  • sloc: ansic: 13,877; python: 631; objc: 319; makefile: 92; perl: 45; sh: 16
file content (874 lines) | stat: -rw-r--r-- 34,704 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/**
 * \file fsw_reiserfs.c
 * ReiserFS file system driver code.
 */

/*-
 * Copyright (c) 2006 Christoph Pfisterer
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 */

#include "fsw_reiserfs.h"


// functions

static fsw_status_t fsw_reiserfs_volume_mount(struct fsw_reiserfs_volume *vol);
static void         fsw_reiserfs_volume_free(struct fsw_reiserfs_volume *vol);
static fsw_status_t fsw_reiserfs_volume_stat(struct fsw_reiserfs_volume *vol, struct fsw_volume_stat *sb);

static fsw_status_t fsw_reiserfs_dnode_fill(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno);
static void         fsw_reiserfs_dnode_free(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno);
static fsw_status_t fsw_reiserfs_dnode_stat(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                        struct fsw_dnode_stat *sb);
static fsw_status_t fsw_reiserfs_get_extent(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                        struct fsw_extent *extent);

static fsw_status_t fsw_reiserfs_dir_lookup(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                        struct fsw_string *lookup_name, struct fsw_reiserfs_dnode **child_dno);
static fsw_status_t fsw_reiserfs_dir_read(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                      struct fsw_shandle *shand, struct fsw_reiserfs_dnode **child_dno);

static fsw_status_t fsw_reiserfs_readlink(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                      struct fsw_string *link);

static fsw_status_t fsw_reiserfs_item_search(struct fsw_reiserfs_volume *vol,
                                             fsw_u32 dir_id, fsw_u32 objectid, fsw_u64 offset,
                                             struct fsw_reiserfs_item *item);
static fsw_status_t fsw_reiserfs_item_next(struct fsw_reiserfs_volume *vol,
                                           struct fsw_reiserfs_item *item);
static void fsw_reiserfs_item_release(struct fsw_reiserfs_volume *vol,
                                      struct fsw_reiserfs_item *item);

//
// Dispatch Table
//

struct fsw_fstype_table   FSW_FSTYPE_TABLE_NAME(reiserfs) = {
    { FSW_STRING_TYPE_ISO88591, 8, 8, "reiserfs" },
    sizeof(struct fsw_reiserfs_volume),
    sizeof(struct fsw_reiserfs_dnode),
    
    fsw_reiserfs_volume_mount,
    fsw_reiserfs_volume_free,
    fsw_reiserfs_volume_stat,
    fsw_reiserfs_dnode_fill,
    fsw_reiserfs_dnode_free,
    fsw_reiserfs_dnode_stat,
    fsw_reiserfs_get_extent,
    fsw_reiserfs_dir_lookup,
    fsw_reiserfs_dir_read,
    fsw_reiserfs_readlink,
};

// misc data

static fsw_u32  superblock_offsets[3] = {
    REISERFS_DISK_OFFSET_IN_BYTES     >> REISERFS_SUPERBLOCK_BLOCKSIZEBITS,
    REISERFS_OLD_DISK_OFFSET_IN_BYTES >> REISERFS_SUPERBLOCK_BLOCKSIZEBITS,
    0
};

/**
 * Mount an reiserfs volume. Reads the superblock and constructs the
 * root directory dnode.
 */

static fsw_status_t fsw_reiserfs_volume_mount(struct fsw_reiserfs_volume *vol)
{
    fsw_status_t    status;
    void            *buffer;
    fsw_u32         blocksize;
    int             i;
    struct fsw_string s;
    
    // allocate memory to keep the superblock around
    status = fsw_alloc(sizeof(struct reiserfs_super_block), &vol->sb);
    if (status)
        return status;
    
    // read the superblock into its buffer
    fsw_set_blocksize(vol, REISERFS_SUPERBLOCK_BLOCKSIZE, REISERFS_SUPERBLOCK_BLOCKSIZE);
    for (i = 0; superblock_offsets[i]; i++) {
        status = fsw_block_get(vol, superblock_offsets[i], 0, &buffer);
        if (status)
            return status;
        fsw_memcpy(vol->sb, buffer, sizeof(struct reiserfs_super_block));
        fsw_block_release(vol, superblock_offsets[i], buffer);
        
        // check for one of the magic strings
        if (fsw_memeq(vol->sb->s_v1.s_magic,
                      REISERFS_SUPER_MAGIC_STRING, 8)) {
            vol->version = REISERFS_VERSION_1;
            break;
        } else if (fsw_memeq(vol->sb->s_v1.s_magic,
                             REISER2FS_SUPER_MAGIC_STRING, 9)) {
            vol->version = REISERFS_VERSION_2;
            break;
        } else if (fsw_memeq(vol->sb->s_v1.s_magic,
                             REISER2FS_JR_SUPER_MAGIC_STRING, 9)) {
            vol->version = vol->sb->s_v1.s_version;
            if (vol->version == REISERFS_VERSION_1 || vol->version == REISERFS_VERSION_2)
                break;
        }
    }
    if (superblock_offsets[i] == 0)
        return FSW_UNSUPPORTED;
    
    // check the superblock
    if (vol->sb->s_v1.s_root_block == -1)   // unfinished 'reiserfsck --rebuild-tree'
        return FSW_VOLUME_CORRUPTED;
    
    /*
    if (vol->sb->s_rev_level != EXT2_GOOD_OLD_REV &&
        vol->sb->s_rev_level != EXT2_DYNAMIC_REV)
        return FSW_UNSUPPORTED;
    if (vol->sb->s_rev_level == EXT2_DYNAMIC_REV &&
        (vol->sb->s_feature_incompat & ~(EXT2_FEATURE_INCOMPAT_FILETYPE | EXT3_FEATURE_INCOMPAT_RECOVER)))
        return FSW_UNSUPPORTED;
    */
    
    // set real blocksize
    blocksize = vol->sb->s_v1.s_blocksize;
    fsw_set_blocksize(vol, blocksize, blocksize);
    
    // get other info from superblock
    /*
    vol->ind_bcnt = EXT2_ADDR_PER_BLOCK(vol->sb);
    vol->dind_bcnt = vol->ind_bcnt * vol->ind_bcnt;
    vol->inode_size = EXT2_INODE_SIZE(vol->sb);
    */
    
    for (i = 0; i < 16; i++)
        if (vol->sb->s_label[i] == 0)
            break;
    s.type = FSW_STRING_TYPE_ISO88591;
    s.size = s.len = i;
    s.data = vol->sb->s_label;
    status = fsw_strdup_coerce(&vol->g.label, vol->g.host_string_type, &s);
    if (status)
        return status;
    
    // setup the root dnode
    status = fsw_dnode_create_root(vol, REISERFS_ROOT_OBJECTID, &vol->g.root);
    if (status)
        return status;
    vol->g.root->dir_id = REISERFS_ROOT_PARENT_OBJECTID;
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_volume_mount: success, blocksize %d tree height %d\n"),
                   blocksize, vol->sb->s_v1.s_tree_height));
    
    return FSW_SUCCESS;
}

/**
 * Free the volume data structure. Called by the core after an unmount or after
 * an unsuccessful mount to release the memory used by the file system type specific
 * part of the volume structure.
 */

static void fsw_reiserfs_volume_free(struct fsw_reiserfs_volume *vol)
{
    if (vol->sb)
        fsw_free(vol->sb);
}

/**
 * Get in-depth information on a volume.
 */

static fsw_status_t fsw_reiserfs_volume_stat(struct fsw_reiserfs_volume *vol, struct fsw_volume_stat *sb)
{
    sb->total_bytes = (fsw_u64)vol->sb->s_v1.s_block_count * vol->g.log_blocksize;
    sb->free_bytes  = (fsw_u64)vol->sb->s_v1.s_free_blocks * vol->g.log_blocksize;
    return FSW_SUCCESS;
}

/**
 * Get full information on a dnode from disk. This function is called by the core
 * whenever it needs to access fields in the dnode structure that may not
 * be filled immediately upon creation of the dnode. In the case of reiserfs, we
 * delay fetching of the stat data until dnode_fill is called. The size and
 * type fields are invalid until this function has been called.
 */

static fsw_status_t fsw_reiserfs_dnode_fill(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno)
{
    fsw_status_t    status;
    fsw_u32         item_len, mode;
    struct fsw_reiserfs_item item;
    
    if (dno->sd_v1 || dno->sd_v2)
        return FSW_SUCCESS;
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_dnode_fill: object %d/%d\n"), dno->dir_id, dno->g.dnode_id));
    
    // find stat data item in reiserfs tree
    status = fsw_reiserfs_item_search(vol, dno->dir_id, dno->g.dnode_id, 0, &item);
    if (status == FSW_NOT_FOUND) {
        FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_dnode_fill: cannot find stat_data for object %d/%d\n"),
                        dno->dir_id, dno->g.dnode_id));
        return FSW_VOLUME_CORRUPTED;
    }
    if (status)
        return status;
    if (item.item_offset != 0) {
        FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_dnode_fill: got item that's not stat_data\n")));
        fsw_reiserfs_item_release(vol, &item);
        return FSW_VOLUME_CORRUPTED;
    }
    item_len = item.ih.ih_item_len;
    
    // get data in appropriate version
    if (item.ih.ih_version == KEY_FORMAT_3_5 && item_len == SD_V1_SIZE) {
        // have stat_data_v1 structure
        status = fsw_memdup((void **)&dno->sd_v1, item.item_data, item_len);
        fsw_reiserfs_item_release(vol, &item);
        if (status)
            return status;
        
        // get info from the inode
        dno->g.size = dno->sd_v1->sd_size;
        mode = dno->sd_v1->sd_mode;
        
    } else if (item.ih.ih_version == KEY_FORMAT_3_6 && item_len == SD_V2_SIZE) {
        // have stat_data_v2 structure
        status = fsw_memdup((void **)&dno->sd_v2, item.item_data, item_len);
        fsw_reiserfs_item_release(vol, &item);
        if (status)
            return status;
        
        // get info from the inode
        dno->g.size = dno->sd_v2->sd_size;
        mode = dno->sd_v2->sd_mode;
        
    } else {
        FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_dnode_fill: version %d(%d) and size %d(%d) not recognized for stat_data\n"),
                        item.ih.ih_version, KEY_FORMAT_3_6, item_len, SD_V2_SIZE));
        fsw_reiserfs_item_release(vol, &item);
        return FSW_VOLUME_CORRUPTED;
    }
    
    // get node type from mode field
    if (S_ISREG(mode))
        dno->g.type = FSW_DNODE_TYPE_FILE;
    else if (S_ISDIR(mode))
        dno->g.type = FSW_DNODE_TYPE_DIR;
    else if (S_ISLNK(mode))
        dno->g.type = FSW_DNODE_TYPE_SYMLINK;
    else
        dno->g.type = FSW_DNODE_TYPE_SPECIAL;
    
    return FSW_SUCCESS;
}

/**
 * Free the dnode data structure. Called by the core when deallocating a dnode
 * structure to release the memory used by the file system type specific part
 * of the dnode structure.
 */

static void fsw_reiserfs_dnode_free(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno)
{
    if (dno->sd_v1)
        fsw_free(dno->sd_v1);
    if (dno->sd_v2)
        fsw_free(dno->sd_v2);
}

/**
 * Get in-depth information on a dnode. The core makes sure that fsw_reiserfs_dnode_fill
 * has been called on the dnode before this function is called. Note that some
 * data is not directly stored into the structure, but passed to a host-specific
 * callback that converts it to the host-specific format.
 */

static fsw_status_t fsw_reiserfs_dnode_stat(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                            struct fsw_dnode_stat *sb)
{
    if (dno->sd_v1) {
        if (dno->g.type == FSW_DNODE_TYPE_SPECIAL)
            sb->used_bytes = 0;
        else
            sb->used_bytes = dno->sd_v1->u.sd_blocks * vol->g.log_blocksize;
        sb->store_time_posix(sb, FSW_DNODE_STAT_CTIME, dno->sd_v1->sd_ctime);
        sb->store_time_posix(sb, FSW_DNODE_STAT_ATIME, dno->sd_v1->sd_atime);
        sb->store_time_posix(sb, FSW_DNODE_STAT_MTIME, dno->sd_v1->sd_mtime);
        sb->store_attr_posix(sb, dno->sd_v1->sd_mode);
    } else if (dno->sd_v2) {
        sb->used_bytes = dno->sd_v2->sd_blocks * vol->g.log_blocksize;
        sb->store_time_posix(sb, FSW_DNODE_STAT_CTIME, dno->sd_v2->sd_ctime);
        sb->store_time_posix(sb, FSW_DNODE_STAT_ATIME, dno->sd_v2->sd_atime);
        sb->store_time_posix(sb, FSW_DNODE_STAT_MTIME, dno->sd_v2->sd_mtime);
        sb->store_attr_posix(sb, dno->sd_v2->sd_mode);
    }
    
    return FSW_SUCCESS;
}

/**
 * Retrieve file data mapping information. This function is called by the core when
 * fsw_shandle_read needs to know where on the disk the required piece of the file's
 * data can be found. The core makes sure that fsw_reiserfs_dnode_fill has been called
 * on the dnode before. Our task here is to get the physical disk block number for
 * the requested logical block number.
 */

static fsw_status_t fsw_reiserfs_get_extent(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                            struct fsw_extent *extent)
{
    fsw_status_t    status;
    fsw_u64         search_offset, intra_offset;
    struct fsw_reiserfs_item item;
    fsw_u32         intra_bno, nr_item;
    
    // Preconditions: The caller has checked that the requested logical block
    //  is within the file's size. The dnode has complete information, i.e.
    //  fsw_reiserfs_dnode_read_info was called successfully on it.
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_get_extent: mapping block %d of object %d/%d\n"),
                   extent->log_start, dno->dir_id, dno->g.dnode_id));
    
    extent->type = FSW_EXTENT_TYPE_SPARSE;
    extent->log_count = 1;
    
    // get the item for the requested block
    search_offset = (fsw_u64)extent->log_start * vol->g.log_blocksize + 1;
    status = fsw_reiserfs_item_search(vol, dno->dir_id, dno->g.dnode_id, search_offset, &item);
    if (status)
        return status;
    if (item.item_offset == 0) {
        fsw_reiserfs_item_release(vol, &item);
        return FSW_SUCCESS;       // no data items found, assume all-sparse file
    }
    intra_offset = search_offset - item.item_offset;
    
    // check the kind of block
    if (item.item_type == TYPE_INDIRECT || item.item_type == V1_INDIRECT_UNIQUENESS) {
        // indirect item, contains block numbers
        
        if (intra_offset & (vol->g.log_blocksize - 1)) {
            FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_get_extent: intra_offset not block-aligned for indirect block\n")));
            goto bail;
        }
        intra_bno = (fsw_u32)FSW_U64_DIV(intra_offset, vol->g.log_blocksize);
        nr_item = item.ih.ih_item_len / sizeof(fsw_u32);
        if (intra_bno >= nr_item) {
            FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_get_extent: indirect block too small\n")));
            goto bail;
        }
        extent->type = FSW_EXTENT_TYPE_PHYSBLOCK;
        extent->phys_start = ((fsw_u32 *)item.item_data)[intra_bno];
        
        // TODO: check if the following blocks can be aggregated into one extent
        
        fsw_reiserfs_item_release(vol, &item);
        return FSW_SUCCESS;
        
    } else if (item.item_type == TYPE_DIRECT || item.item_type == V1_DIRECT_UNIQUENESS) {
        // direct item, contains file data
        
        // TODO: Check if direct items always start on block boundaries. If not, we may have
        //  to do extra work here.
        
        if (intra_offset != 0) {
            FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_get_extent: intra_offset not aligned for direct block\n")));
            goto bail;
        }
        
        extent->type = FSW_EXTENT_TYPE_BUFFER;
        status = fsw_memdup(&extent->buffer, item.item_data, item.ih.ih_item_len);
        fsw_reiserfs_item_release(vol, &item);
        if (status)
            return status;
        
        return FSW_SUCCESS;
        
    }
    
bail:
    fsw_reiserfs_item_release(vol, &item);
    return FSW_VOLUME_CORRUPTED;
    
    /*    
    // check if the following blocks can be aggregated into one extent
    file_bcnt = (fsw_u32)((dno->g.size + vol->g.log_blocksize - 1) & (vol->g.log_blocksize - 1));
    while (path[i]           + extent->log_count < buf_bcnt &&    // indirect block has more block pointers
           extent->log_start + extent->log_count < file_bcnt) {   // file has more blocks
        if (buffer[path[i] + extent->log_count] == buffer[path[i] + extent->log_count - 1] + 1)
            extent->log_count++;
        else
            break;
    }
    */
}

/**
 * Lookup a directory's child dnode by name. This function is called on a directory
 * to retrieve the directory entry with the given name. A dnode is constructed for
 * this entry and returned. The core makes sure that fsw_reiserfs_dnode_fill has been called
 * and the dnode is actually a directory.
 */

static fsw_status_t fsw_reiserfs_dir_lookup(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                            struct fsw_string *lookup_name, struct fsw_reiserfs_dnode **child_dno_out)
{
    fsw_status_t    status;
    struct fsw_reiserfs_item item;
    fsw_u32         nr_item, i, name_offset, next_name_offset, name_len;
    fsw_u32         child_dir_id;
    struct reiserfs_de_head *dhead;
    struct fsw_string entry_name;
    
    // Preconditions: The caller has checked that dno is a directory node.
    
    // BIG TODOS: Use the hash function to start with the item containing the entry.
    //  Use binary search within the item.
    
    entry_name.type = FSW_STRING_TYPE_ISO88591;
    
    // get the item for that position
    status = fsw_reiserfs_item_search(vol, dno->dir_id, dno->g.dnode_id, FIRST_ITEM_OFFSET, &item);
    if (status)
        return status;
    if (item.item_offset == 0) {
        fsw_reiserfs_item_release(vol, &item);
        return FSW_NOT_FOUND;       // empty directory or something
    }
    
    for(;;) {
        
        // search the directory item
        dhead = (struct reiserfs_de_head *)item.item_data;
        nr_item = item.ih.u.ih_entry_count;
        next_name_offset = item.ih.ih_item_len;
        for (i = 0; i < nr_item; i++, dhead++, next_name_offset = name_offset) {
            // get the name
            name_offset = dhead->deh_location;
            name_len = next_name_offset - name_offset;
            while (name_len > 0 && item.item_data[name_offset + name_len - 1] == 0)
                name_len--;
            
            entry_name.len = entry_name.size = name_len;
            entry_name.data = item.item_data + name_offset;
            
            // compare name
            if (fsw_streq(lookup_name, &entry_name)) {
                // found the entry we're looking for!
                
                // setup a dnode for the child item
                status = fsw_dnode_create(dno, dhead->deh_objectid, FSW_DNODE_TYPE_UNKNOWN, &entry_name, child_dno_out);
                child_dir_id = dhead->deh_dir_id;
                fsw_reiserfs_item_release(vol, &item);
                if (status)
                    return status;
                (*child_dno_out)->dir_id = child_dir_id;
                
                return FSW_SUCCESS;
            }
        }
        
        // We didn't find the next directory entry in this item. Look for the next
        // item of the directory.
        
        status = fsw_reiserfs_item_next(vol, &item);
        if (status)
            return status;
        
    }
}

/**
 * Get the next directory entry when reading a directory. This function is called during
 * directory iteration to retrieve the next directory entry. A dnode is constructed for
 * the entry and returned. The core makes sure that fsw_reiserfs_dnode_fill has been called
 * and the dnode is actually a directory. The shandle provided by the caller is used to
 * record the position in the directory between calls.
 */

static fsw_status_t fsw_reiserfs_dir_read(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                          struct fsw_shandle *shand, struct fsw_reiserfs_dnode **child_dno_out)
{
    fsw_status_t    status;
    struct fsw_reiserfs_item item;
    fsw_u32         nr_item, i, name_offset, next_name_offset, name_len;
    fsw_u32         child_dir_id;
    struct reiserfs_de_head *dhead;
    struct fsw_string entry_name;
    
    // Preconditions: The caller has checked that dno is a directory node. The caller
    //  has opened a storage handle to the directory's storage and keeps it around between
    //  calls.
    
    // BIG TODOS: Use binary search within the item.
    
    // adjust pointer to first entry if necessary
    if (shand->pos == 0)
        shand->pos = FIRST_ITEM_OFFSET;
    
    // get the item for that position
    status = fsw_reiserfs_item_search(vol, dno->dir_id, dno->g.dnode_id, shand->pos, &item);
    if (status)
        return status;
    if (item.item_offset == 0) {
        fsw_reiserfs_item_release(vol, &item);
        return FSW_NOT_FOUND;       // empty directory or something
    }
    
    for(;;) {
        
        // search the directory item
        dhead = (struct reiserfs_de_head *)item.item_data;
        nr_item = item.ih.u.ih_entry_count;
        for (i = 0; i < nr_item; i++, dhead++) {
            if (dhead->deh_offset < shand->pos)
                continue;  // not yet past the last entry returned
            if (dhead->deh_offset == DOT_OFFSET || dhead->deh_offset == DOT_DOT_OFFSET)
                continue;  // never report . or ..
            
            // get the name
            name_offset = dhead->deh_location;
            if (i == 0)
                next_name_offset = item.ih.ih_item_len;
            else
                next_name_offset = dhead[-1].deh_location;
            name_len = next_name_offset - name_offset;
            while (name_len > 0 && item.item_data[name_offset + name_len - 1] == 0)
                name_len--;
            
            entry_name.type = FSW_STRING_TYPE_ISO88591;
            entry_name.len = entry_name.size = name_len;
            entry_name.data = item.item_data + name_offset;
            
            if (fsw_streq_cstr(&entry_name, ".reiserfs_priv"))
                continue;  // never report this special file
            
            // found the next entry!
            shand->pos = dhead->deh_offset + 1;
            
            // setup a dnode for the child item
            status = fsw_dnode_create(dno, dhead->deh_objectid, FSW_DNODE_TYPE_UNKNOWN, &entry_name, child_dno_out);
            child_dir_id = dhead->deh_dir_id;
            fsw_reiserfs_item_release(vol, &item);
            if (status)
                return status;
            (*child_dno_out)->dir_id = child_dir_id;
            
            return FSW_SUCCESS;
        }
        
        // We didn't find the next directory entry in this item. Look for the next
        // item of the directory.
        
        status = fsw_reiserfs_item_next(vol, &item);
        if (status)
            return status;
        
    }
}

/**
 * Get the target path of a symbolic link. This function is called when a symbolic
 * link needs to be resolved. The core makes sure that the fsw_reiserfs_dnode_fill has been
 * called on the dnode and that it really is a symlink.
 */

static fsw_status_t fsw_reiserfs_readlink(struct fsw_reiserfs_volume *vol, struct fsw_reiserfs_dnode *dno,
                                          struct fsw_string *link_target)
{
    return fsw_dnode_readlink_data(dno, link_target);
}

/**
 * Compare an on-disk tree key against the search key.
 */

static int fsw_reiserfs_compare_key(struct reiserfs_key *key,
                                    fsw_u32 dir_id, fsw_u32 objectid, fsw_u64 offset)
{
    fsw_u32 key_type;
    fsw_u64 key_offset;
    
    if (key->k_dir_id > dir_id)
        return FIRST_GREATER;
    if (key->k_dir_id < dir_id)
        return SECOND_GREATER;
    
    if (key->k_objectid > objectid)
        return FIRST_GREATER;
    if (key->k_objectid < objectid)
        return SECOND_GREATER;
    
    // determine format of the on-disk key
    key_type = (fsw_u32)FSW_U64_SHR(key->u.k_offset_v2.v, 60);
    if (key_type != TYPE_DIRECT && key_type != TYPE_INDIRECT && key_type != TYPE_DIRENTRY) {
        // detected 3.5 format (_v1)
        key_offset = key->u.k_offset_v1.k_offset;
    } else {
        // detected 3.6 format (_v2)
        key_offset = key->u.k_offset_v2.v & (~0ULL >> 4);
    }
    if (key_offset > offset)
        return FIRST_GREATER;
    if (key_offset < offset)
        return SECOND_GREATER;
    return KEYS_IDENTICAL;
}

/**
 * Find an item by key in the reiserfs tree.
 */

static fsw_status_t fsw_reiserfs_item_search(struct fsw_reiserfs_volume *vol,
                                            fsw_u32 dir_id, fsw_u32 objectid, fsw_u64 offset,
                                            struct fsw_reiserfs_item *item)
{
    fsw_status_t    status;
    int             comp_result;
    fsw_u32         tree_bno, next_tree_bno, tree_level, nr_item, i;
    fsw_u8          *buffer;
    struct block_head *bhead;
    struct reiserfs_key *key;
    struct item_head *ihead;
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_item_search: searching %d/%d/%lld\n"), dir_id, objectid, offset));
    
    // BIG TODOS: Use binary search within the item.
    //  Remember tree path for "get next item" function.
    
    item->valid = 0;
    item->block_bno = 0;
    
    // walk the tree
    tree_bno = vol->sb->s_v1.s_root_block;
    for (tree_level = vol->sb->s_v1.s_tree_height - 1; ; tree_level--) {
        
        // get the current tree block into memory
        status = fsw_block_get(vol, tree_bno, tree_level, (void **)&buffer);
        if (status)
            return status;
        bhead = (struct block_head *)buffer;
        if (bhead->blk_level != tree_level) {
            FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_item_search: tree block %d has not expected level %d\n"), tree_bno, tree_level));
            fsw_block_release(vol, tree_bno, buffer);
            return FSW_VOLUME_CORRUPTED;
        }
        nr_item = bhead->blk_nr_item;
        FSW_MSG_DEBUGV((FSW_MSGSTR("fsw_reiserfs_item_search: visiting block %d level %d items %d\n"), tree_bno, tree_level, nr_item));
        item->path_bno[tree_level] = tree_bno;
        
        // check if we have reached a leaf block
        if (tree_level == DISK_LEAF_NODE_LEVEL)
            break;
        
        // search internal node block, look for the path to follow
        key = (struct reiserfs_key *)(buffer + BLKH_SIZE);
        for (i = 0; i < nr_item; i++, key++) {
            if (fsw_reiserfs_compare_key(key, dir_id, objectid, offset) == FIRST_GREATER)
                break;
        }
        item->path_index[tree_level] = i;
        next_tree_bno = ((struct disk_child *)(buffer + BLKH_SIZE + nr_item * KEY_SIZE))[i].dc_block_number;
        fsw_block_release(vol, tree_bno, buffer);
        tree_bno = next_tree_bno;
    }
    
    // search leaf node block, look for our data
    ihead = (struct item_head *)(buffer + BLKH_SIZE);
    for (i = 0; i < nr_item; i++, ihead++) {
        comp_result = fsw_reiserfs_compare_key(&ihead->ih_key, dir_id, objectid, offset);
        if (comp_result == KEYS_IDENTICAL)
            break;
        if (comp_result == FIRST_GREATER) {
            // Current key is greater than the search key. Use the last key before this
            // one as the preliminary result.
            if (i == 0) {
                fsw_block_release(vol, tree_bno, buffer);
                return FSW_NOT_FOUND;
            }
            i--, ihead--;
            break;
        }
    }
    if (i >= nr_item) {
        // Go back to the last key, it was smaller than the search key.
        // NOTE: The first key of the next leaf block is guaranteed to be greater than
        //  our search key.
        i--, ihead--;
    }
    item->path_index[tree_level] = i;
    // Since we may have a key that is smaller than the search key, verify that
    // it is for the same object.
    if (ihead->ih_key.k_dir_id != dir_id || ihead->ih_key.k_objectid != objectid) {
        fsw_block_release(vol, tree_bno, buffer);
        return FSW_NOT_FOUND;   // Found no key for this object at all
    }
    
    // return results
    fsw_memcpy(&item->ih, ihead, sizeof(struct item_head));
    item->item_type = (fsw_u32)FSW_U64_SHR(ihead->ih_key.u.k_offset_v2.v, 60);
    if (item->item_type != TYPE_DIRECT &&
        item->item_type != TYPE_INDIRECT &&
        item->item_type != TYPE_DIRENTRY) {
        // 3.5 format (_v1)
        item->item_type = ihead->ih_key.u.k_offset_v1.k_uniqueness;
        item->item_offset = ihead->ih_key.u.k_offset_v1.k_offset;
    } else {
        // 3.6 format (_v2)
        item->item_offset = ihead->ih_key.u.k_offset_v2.v & (~0ULL >> 4);
    }
    item->item_data = buffer + ihead->ih_item_location;
    item->valid = 1;
    
    // add information for block release
    item->block_bno = tree_bno;
    item->block_buffer = buffer;
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_item_search: found %d/%d/%lld (%d)\n"),
                   ihead->ih_key.k_dir_id, ihead->ih_key.k_objectid, item->item_offset, item->item_type));
    return FSW_SUCCESS;
}

/**
 * Find the next item in the reiserfs tree for an already-found item.
 */

static fsw_status_t fsw_reiserfs_item_next(struct fsw_reiserfs_volume *vol,
                                          struct fsw_reiserfs_item *item)
{
    fsw_status_t    status;
    fsw_u32         dir_id, objectid;
    fsw_u64         offset;
    fsw_u32         tree_bno, next_tree_bno, tree_level, nr_item, nr_ptr_item;
    fsw_u8          *buffer;
    struct block_head *bhead;
    struct item_head *ihead;
    
    if (!item->valid)
        return FSW_NOT_FOUND;
    fsw_reiserfs_item_release(vol, item);   // TODO: maybe delay this and/or use the cached block!
    
    dir_id = item->ih.ih_key.k_dir_id;
    objectid = item->ih.ih_key.k_objectid;
    offset = item->item_offset;
    
    FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_item_next: next for %d/%d/%lld\n"), dir_id, objectid, offset));
    
    // find a node that has more items, moving up until we find one
    
    for (tree_level = DISK_LEAF_NODE_LEVEL; tree_level < vol->sb->s_v1.s_tree_height; tree_level++) {
        
        // get the current tree block into memory
        tree_bno = item->path_bno[tree_level];
        status = fsw_block_get(vol, tree_bno, tree_level, (void **)&buffer);
        if (status)
            return status;
        bhead = (struct block_head *)buffer;
        if (bhead->blk_level != tree_level) {
            FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_item_next: tree block %d has not expected level %d\n"), tree_bno, tree_level));
            fsw_block_release(vol, tree_bno, buffer);
            return FSW_VOLUME_CORRUPTED;
        }
        nr_item = bhead->blk_nr_item;
        FSW_MSG_DEBUGV((FSW_MSGSTR("fsw_reiserfs_item_next: visiting block %d level %d items %d\n"), tree_bno, tree_level, nr_item));
        
        nr_ptr_item = nr_item + ((tree_level > DISK_LEAF_NODE_LEVEL) ? 1 : 0);  // internal nodes have (nr_item) keys and (nr_item+1) pointers
        item->path_index[tree_level]++;
        if (item->path_index[tree_level] >= nr_ptr_item) {
            item->path_index[tree_level] = 0;
            fsw_block_release(vol, tree_bno, buffer);
            continue;  // this node doesn't have any more items, move up one level
        }
        
        // we have a new path to follow, move down to the leaf node again
        while (tree_level > DISK_LEAF_NODE_LEVEL) {
            // get next pointer from current block
            next_tree_bno = ((struct disk_child *)(buffer + BLKH_SIZE + nr_item * KEY_SIZE))[item->path_index[tree_level]].dc_block_number;
            fsw_block_release(vol, tree_bno, buffer);
            tree_bno = next_tree_bno;
            tree_level--;
            
            // get the current tree block into memory
            status = fsw_block_get(vol, tree_bno, tree_level, (void **)&buffer);
            if (status)
                return status;
            bhead = (struct block_head *)buffer;
            if (bhead->blk_level != tree_level) {
                FSW_MSG_ASSERT((FSW_MSGSTR("fsw_reiserfs_item_next: tree block %d has not expected level %d\n"), tree_bno, tree_level));
                fsw_block_release(vol, tree_bno, buffer);
                return FSW_VOLUME_CORRUPTED;
            }
            nr_item = bhead->blk_nr_item;
            FSW_MSG_DEBUGV((FSW_MSGSTR("fsw_reiserfs_item_next: visiting block %d level %d items %d\n"), tree_bno, tree_level, nr_item));
            item->path_bno[tree_level] = tree_bno;
        }
        
        // get the item from the leaf node
        ihead = ((struct item_head *)(buffer + BLKH_SIZE)) + item->path_index[tree_level];
        
        // We now have the item that follows the previous one in the tree. Check that it
        // belongs to the same object.
        if (ihead->ih_key.k_dir_id != dir_id || ihead->ih_key.k_objectid != objectid) {
            fsw_block_release(vol, tree_bno, buffer);
            return FSW_NOT_FOUND;   // Found no next key for this object
        }
        
        // return results
        fsw_memcpy(&item->ih, ihead, sizeof(struct item_head));
        item->item_type = (fsw_u32)FSW_U64_SHR(ihead->ih_key.u.k_offset_v2.v, 60);
        if (item->item_type != TYPE_DIRECT &&
            item->item_type != TYPE_INDIRECT &&
            item->item_type != TYPE_DIRENTRY) {
            // 3.5 format (_v1)
            item->item_type = ihead->ih_key.u.k_offset_v1.k_uniqueness;
            item->item_offset = ihead->ih_key.u.k_offset_v1.k_offset;
        } else {
            // 3.6 format (_v2)
            item->item_offset = ihead->ih_key.u.k_offset_v2.v & (~0ULL >> 4);
        }
        item->item_data = buffer + ihead->ih_item_location;
        item->valid = 1;
        
        // add information for block release
        item->block_bno = tree_bno;
        item->block_buffer = buffer;
        
        FSW_MSG_DEBUG((FSW_MSGSTR("fsw_reiserfs_item_next: found %d/%d/%lld (%d)\n"),
                       ihead->ih_key.k_dir_id, ihead->ih_key.k_objectid, item->item_offset, item->item_type));
        return FSW_SUCCESS;
    }
    
    // we went to the highest level node and there still were no more items...
    return FSW_NOT_FOUND;
}

/**
 * Release the disk block still referenced by an item search result.
 */

static void fsw_reiserfs_item_release(struct fsw_reiserfs_volume *vol,
                                      struct fsw_reiserfs_item *item)
{
    if (!item->valid)
        return;
    
    if (item->block_bno > 0) {
        fsw_block_release(vol, item->block_bno, item->block_buffer);
        item->block_bno = 0;
    }
}

// EOF