1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
#  reflect-cpp
[](https://opensource.org/licenses/MIT)
[](https://github.com/getml/reflect-cpp/graphs/commit-activity)
[](https://shields.io/)
[](https://shields.io/)
[](https://shields.io/)
[](https://shields.io/)
[](https://conan.io/center/recipes/reflect-cpp)
**📖 Documentation**: https://rfl.getml.com

**reflect-cpp** is a C++-20 library for **fast serialization, deserialization and validation** using reflection, similar to [pydantic](https://github.com/pydantic/pydantic) in Python, [serde](https://github.com/serde-rs) in Rust, [encoding](https://github.com/golang/go/tree/master/src/encoding) in Go or [aeson](https://github.com/haskell/aeson/tree/master) in Haskell.
As the aforementioned libraries are among the most widely used in the respective languages, reflect-cpp fills an important gap in C++ development. It reduces boilerplate code and increases code safety.
### Design principles for reflect-cpp include:
- Close integration with [containers](https://github.com/getml/reflect-cpp?tab=readme-ov-file#support-for-containers) from the C++ standard library
- Close adherence to C++ idioms
- Out-of-the-box support for [JSON](https://rfl.getml.com/supported_formats/json)
- Simple [installation](https://rfl.getml.com/install)
- Simple extendability to [other serialization formats](https://rfl.getml.com/supported_formats/supporting_your_own_format)
- Simple extendability to [custom classes](https://rfl.getml.com/concepts/custom_classes)
- Being one of the fastest serialization libraries in existence, as demonstrated by our [benchmarks](https://rfl.getml.com/benchmarks)
<br>
## Table of Contents
### On this page
- [Serialization formats](#serialization-formats)
- [Feature Overview](#feature-overview)
- [Simple Example](#simple-example)
- [More Comprehensive Example](#more-comprehensive-example)
- [Error messages](#error-messages)
- [JSON schema](#json-schema)
- [Enums](#enums)
- [Algebraic data types](#algebraic-data-types)
- [Extra fields](#extra-fields)
- [Reflective programming](#reflective-programming)
- [Standard Library Integration](#support-for-containers)
- [The team behind reflect-cpp](#the-team-behind-reflect-cpp)
- [License](#license)
### More in our [documentation](https://rfl.getml.com):
- [Installation ↗](https://rfl.getml.com/install/#option-2-compilation-using-cmake)
- [Benchmarks ↗](https://rfl.getml.com/benchmarks)
- [How to contribute ↗](https://rfl.getml.com/contributing)
- [Compiling and running the tests ↗](https://rfl.getml.com/contributing/#compiling-and-running-the-tests)
## Serialization formats
reflect-cpp provides a unified reflection-based interface across different serialization formats. It is deliberately designed in a very modular way, using [concepts](https://en.cppreference.com/w/cpp/language/constraints), to make it as easy as possible to interface various C or C++ libraries related to serialization. Refer to the [documentation](https://rfl.getml.com/supported_formats/bson/) for details.
The following table lists the serialization formats currently supported by reflect-cpp and the underlying libraries used:
| Format | Library | Version | License | Remarks |
|--------------|------------------------------------------------------|--------------|------------| -----------------------------------------------------|
| JSON | [yyjson](https://github.com/ibireme/yyjson) | >= 0.8.0 | MIT | out-of-the-box support, included in this repository |
| Avro | [avro-c](https://avro.apache.org/docs/1.11.1/api/c/) | >= 1.11.3 | Apache 2.0 | Schemaful binary format |
| BSON | [libbson](https://github.com/mongodb/mongo-c-driver) | >= 1.25.1 | Apache 2.0 | JSON-like binary format |
| Cap'n Proto | [capnproto](https://capnproto.org) | >= 1.0.2 | MIT | Schemaful binary format |
| CBOR | [jsoncons](https://github.com/danielaparker/jsoncons)| >= 0.176.0 | BSL 1.0 | JSON-like binary format |
| flexbuffers | [flatbuffers](https://github.com/google/flatbuffers) | >= 23.5.26 | Apache 2.0 | Schema-less version of flatbuffers, binary format |
| msgpack | [msgpack-c](https://github.com/msgpack/msgpack-c) | >= 6.0.0 | BSL 1.0 | JSON-like binary format |
| TOML | [toml11](https://github.com/ToruNiina/toml11) | >= 4.2.0 | MIT | Textual format with an emphasis on readability |
| UBJSON | [jsoncons](https://github.com/danielaparker/jsoncons)| >= 0.176.0 | BSL 1.0 | JSON-like binary format |
| XML | [pugixml](https://github.com/zeux/pugixml) | >= 1.14 | MIT | Textual format used in many legacy projects |
| YAML | [yaml-cpp](https://github.com/jbeder/yaml-cpp) | >= 0.8.0 | MIT | Textual format with an emphasis on readability |
Support for more serialization formats is in development. Refer to the [issues](https://github.com/getml/reflect-cpp/issues) for details.
Please also refer to the *conanfile.py* or *vcpkg.json* in this repository.
## Feature Overview
### Simple Example
```cpp
#include <rfl/json.hpp>
#include <rfl.hpp>
struct Person {
std::string first_name;
std::string last_name;
int age;
};
const auto homer =
Person{.first_name = "Homer",
.last_name = "Simpson",
.age = 45};
// We can now write into and read from a JSON string.
const std::string json_string = rfl::json::write(homer);
auto homer2 = rfl::json::read<Person>(json_string).value();
```
The resulting JSON string looks like this:
```json
{"first_name":"Homer","last_name":"Simpson","age":45}
```
You can transform the field names from `snake_case` to `camelCase` like this:
```cpp
const std::string json_string =
rfl::json::write<rfl::SnakeCaseToCamelCase>(homer);
auto homer2 =
rfl::json::read<Person, rfl::SnakeCaseToCamelCase>(json_string).value();
```
The resulting JSON string looks like this:
```json
{"firstName":"Homer","lastName":"Simpson","age":45}
```
Or you can use another format, such as YAML.
```cpp
#include <rfl/yaml.hpp>
// ... (same as above)
const std::string yaml_string = rfl::yaml::write(homer);
auto homer2 = rfl::yaml::read<Person>(yaml_string).value();
```
The resulting YAML string looks like this:
```yaml
first_name: Homer
last_name: Simpson
age: 45
```
This will work for just about any example in the entire documentation
and any supported format, except where explicitly noted otherwise:
```cpp
rfl::avro::write(homer);
rfl::bson::write(homer);
rfl::capnproto::write(homer);
rfl::cbor::write(homer);
rfl::flexbuf::write(homer);
rfl::msgpack::write(homer);
rfl::toml::write(homer);
rfl::ubjson::write(homer);
rfl::xml::write(homer);
rfl::avro::read<Person>(avro_bytes);
rfl::bson::read<Person>(bson_bytes);
rfl::capnproto::read<Person>(capnproto_bytes);
rfl::cbor::read<Person>(cbor_bytes);
rfl::flexbuf::read<Person>(flexbuf_bytes);
rfl::msgpack::read<Person>(msgpack_bytes);
rfl::toml::read<Person>(toml_string);
rfl::ubjson::read<Person>(ubjson_bytes);
rfl::xml::read<Person>(xml_string);
```
### More Comprehensive Example
```cpp
#include <iostream>
#include <rfl/json.hpp>
#include <rfl.hpp>
// Age must be a plausible number, between 0 and 130. This will
// be validated automatically.
using Age = rfl::Validator<int, rfl::Minimum<0>, rfl::Maximum<130>>;
struct Person {
rfl::Rename<"firstName", std::string> first_name;
rfl::Rename<"lastName", std::string> last_name = "Simpson";
std::string town = "Springfield";
rfl::Timestamp<"%Y-%m-%d"> birthday;
Age age;
rfl::Email email;
std::vector<Person> children;
};
const auto bart = Person{.first_name = "Bart",
.birthday = "1987-04-19",
.age = 10,
.email = "bart@simpson.com"};
const auto lisa = Person{.first_name = "Lisa",
.birthday = "1987-04-19",
.age = 8,
.email = "lisa@simpson.com"};
const auto maggie = Person{.first_name = "Maggie",
.birthday = "1987-04-19",
.age = 0,
.email = "maggie@simpson.com"};
const auto homer =
Person{.first_name = "Homer",
.birthday = "1987-04-19",
.age = 45,
.email = "homer@simpson.com",
.children = std::vector<Person>({bart, lisa, maggie})};
// We can now transform this into a JSON string.
const std::string json_string = rfl::json::write(homer);
std::cout << json_string << std::endl;
// We can also directly write into std::cout (or any other std::ostream).
rfl::json::write(homer, std::cout) << std::endl;
```
This results in the following JSON string:
```json
{"firstName":"Homer","lastName":"Simpson","town":"Springfield","birthday":"1987-04-19","age":45,"email":"homer@simpson.com","children":[{"firstName":"Bart","lastName":"Simpson","town":"Springfield","birthday":"1987-04-19","age":10,"email":"bart@simpson.com","children":[]},{"firstName":"Lisa","lastName":"Simpson","town":"Springfield","birthday":"1987-04-19","age":8,"email":"lisa@simpson.com","children":[]},{"firstName":"Maggie","lastName":"Simpson","town":"Springfield","birthday":"1987-04-19","age":0,"email":"maggie@simpson.com","children":[]}]}
```
We can also create structs from the string:
```cpp
auto homer2 = rfl::json::read<Person>(json_string).value();
// Fields can be accessed like this:
std::cout << "Hello, my name is " << homer.first_name() << " "
<< homer.last_name() << "." << std::endl;
// Since homer2 is mutable, we can also change the values like this:
homer2.first_name = "Marge";
std::cout << "Hello, my name is " << homer2.first_name() << " "
<< homer2.last_name() << "." << std::endl;
```
### Error messages
reflect-cpp returns clear and comprehensive error messages:
```cpp
const std::string faulty_json_string =
R"({"firstName":"Homer","lastName":12345,"town":"Springfield","birthday":"04/19/1987","age":145,"email":"homer(at)simpson.com"})";
const auto result = rfl::json::read<Person>(faulty_json_string);
```
Yields the following error message:
```
Found 5 errors:
1) Failed to parse field 'lastName': Could not cast to string.
2) Failed to parse field 'birthday': String '04/19/1987' did not match format '%Y-%m-%d'.
3) Failed to parse field 'age': Value expected to be less than or equal to 130, but got 145.
4) Failed to parse field 'email': String 'homer(at)simpson.com' did not match format 'Email': '^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'.
5) Field named 'children' not found.
```
### JSON schema
reflect-cpp also supports generating JSON schemata:
```cpp
struct Person {
std::string first_name;
std::string last_name;
rfl::Description<"Must be a proper email in the form xxx@xxx.xxx.",
rfl::Email>
email;
rfl::Description<
"The person's children. Pass an empty array for no children.",
std::vector<Person>>
children;
float salary;
};
const std::string json_schema = rfl::json::to_schema<Person>();
```
The resulting JSON schema looks like this:
```json
{"$schema":"https://json-schema.org/draft/2020-12/schema","$ref":"#/definitions/Person","definitions":{"Person":{"type":"object","properties":{"children":{"type":"array","description":"The person's children. Pass an empty array for no children.","items":{"$ref":"#/definitions/Person"}},"email":{"type":"string","description":"Must be a proper email in the form xxx@xxx.xxx.","pattern":"^[a-zA-Z0-9._%+\\-]+@[a-zA-Z0-9.\\-]+\\.[a-zA-Z]{2,}$"},"first_name":{"type":"string"},"last_name":{"type":"string"},"salary":{"type":"number"}},"required":["children","email","first_name","last_name","salary"]}}}
```
Note that this is currently supported for JSON only, since most other formats do not support schemata in the first place.
### Enums
reflect-cpp supports scoped enumerations:
```cpp
enum class Shape { circle, square, rectangle };
enum class Color { red = 256, green = 512, blue = 1024, yellow = 2048 };
struct Item {
float pos_x;
float pos_y;
Shape shape;
Color color;
};
const auto item = Item{.pos_x = 2.0,
.pos_y = 3.0,
.shape = Shape::square,
.color = Color::red | Color::blue};
rfl::json::write(item);
```
This results in the following JSON string:
```json
{"pos_x":2.0,"pos_y":3.0,"shape":"square","color":"red|blue"}
```
You can also directly convert between enumerator values and strings with `rfl::enum_to_string()` and `rfl::string_to_enum()`, or
obtain list of enumerator name and value pairs with `rfl::get_enumerators<EnumType>()` or `rfl::get_enumerator_array<EnumType>()`.
### Algebraic data types
reflect-cpp supports Pydantic-style tagged unions, which allow you to form algebraic data types:
```cpp
struct Circle {
double radius;
};
struct Rectangle {
double height;
double width;
};
struct Square {
double width;
};
using Shapes = rfl::TaggedUnion<"shape", Circle, Square, Rectangle>;
const Shapes r = Rectangle{.height = 10, .width = 5};
const auto json_string = rfl::json::write(r);
```
This results in the following JSON string:
```json
{"shape":"Rectangle","height":10.0,"width":5.0}
```
Other forms of tagging are supported as well. Refer to the [documentation](https://rfl.getml.com/docs-readme) for details.
### Extra fields
If you don't know all of your fields at compile time, no problem. Just use `rfl::ExtraFields`:
```cpp
struct Person {
std::string first_name;
std::string last_name = "Simpson";
rfl::ExtraFields<rfl::Generic> extra_fields;
};
auto homer = Person{.first_name = "Homer"};
homer.extra_fields["age"] = 45;
homer.extra_fields["email"] = "homer@simpson.com";
homer.extra_fields["town"] = "Springfield";
```
This results in the following JSON string:
```json
{"firstName":"Homer","lastName":"Simpson","age":45,"email":"homer@simpson.com","town":"Springfield"}
```
### Reflective programming
Beyond serialization and deserialization, reflect-cpp also supports reflective programming in general.
For instance:
```cpp
struct Person {
std::string first_name;
std::string last_name = "Simpson";
std::string town = "Springfield";
unsigned int age;
std::vector<Person> children;
};
for (const auto& f : rfl::fields<Person>()) {
std::cout << "name: " << f.name() << ", type: " << f.type() << std::endl;
}
```
You can also create a view and then access these fields using `std::get` or `rfl::get`, or iterate over the fields at compile-time:
```cpp
auto lisa = Person{.first_name = "Lisa", .last_name = "Simpson", .age = 8};
const auto view = rfl::to_view(lisa);
// view.values() is a std::tuple containing
// pointers to the original fields.
// This will modify the struct `lisa`:
*std::get<0>(view.values()) = "Maggie";
// All of this is supported as well:
*view.get<1>() = "Simpson";
*view.get<"age">() = 0;
*rfl::get<0>(view) = "Maggie";
*rfl::get<"first_name">(view) = "Maggie";
view.apply([](const auto& f) {
// f is an rfl::Field pointing to the original field.
std::cout << f.name() << ": " << rfl::json::write(*f.value()) << std::endl;
});
```
It also possible to replace fields:
```cpp
struct Person {
std::string first_name;
std::string last_name;
std::vector<Person> children;
};
const auto lisa = Person{.first_name = "Lisa", .last_name = "Simpson"};
// Returns a deep copy of "lisa" with the first_name replaced.
const auto maggie = rfl::replace(
lisa, rfl::make_field<"first_name">(std::string("Maggie")));
```
Or you can create structs from other structs:
```cpp
struct A {
std::string f1;
std::string f2;
};
struct B {
std::string f3;
std::string f4;
};
struct C {
std::string f1;
std::string f2;
std::string f4;
};
const auto a = A{.f1 = "Hello", .f2 = "World"};
const auto b = B{.f3 = "Hello", .f4 = "World"};
// f1 and f2 are taken from a, f4 is taken from b, f3 is ignored.
const auto c = rfl::as<C>(a, b);
```
You can also replace fields in structs using fields from other structs:
```cpp
const auto a = A{.f1 = "Hello", .f2 = "World"};
const auto c = C{.f1 = "C++", .f2 = "is", .f4 = "great"};
// The fields f1 and f2 are replaced with the fields f1 and f2 in a.
const auto c2 = rfl::replace(c, a);
```
### Support for containers
#### C++ standard library
reflect-cpp supports the following containers from the C++ standard library:
- `std::array`
- `std::deque`
- `std::filesystem::path`
- `std::forward_list`
- `std::map`
- `std::multimap`
- `std::multiset`
- `std::list`
- `std::optional`
- `std::pair`
- `std::set`
- `std::shared_ptr`
- `std::string`
- `std::tuple`
- `std::unique_ptr`
- `std::unordered_map`
- `std::unordered_multimap`
- `std::unordered_multiset`
- `std::unordered_set`
- `std::variant`
- `std::vector`
- `std::wstring`
#### Additional containers
In addition, it supports the following custom containers:
- `rfl::Binary`: Used to express numbers in binary format.
- `rfl::Box`: Similar to `std::unique_ptr`, but (almost) guaranteed to never be null.
- `rfl::Bytestring`: An alias for `std::vector<std::byte>`. Supported by Avro, BSON, Cap'n Proto, CBOR, flexbuffers, msgpack and UBJSON.
- `rfl::Generic`: A catch-all type that can represent (almost) anything.
- `rfl::Hex`: Used to express numbers in hex format.
- `rfl::Literal`: An explicitly enumerated string.
- `rfl::NamedTuple`: Similar to `std::tuple`, but with named fields that can be retrieved via their name at compile time.
- `rfl::Object`: A map-like type representing a object with field names that are unknown at compile time.
- `rfl::Oct`: Used to express numbers in octal format.
- `rfl::Ref`: Similar to `std::shared_ptr`, but (almost) guaranteed to never be null.
- `rfl::Result`: Allows for exception-free programming.
- `rfl::TaggedUnion`: Similar to `std::variant`, but with explicit tags that make parsing more efficient.
- `rfl::Tuple`: An alternative to `std::tuple` that compiles considerably faster.
- `rfl::Validator`: Allows for automatic input validation.
- `rfl::Variant`: An alternative to `std::variant` that compiles considerably faster.
#### Custom classes
Finally, it is very easy to extend full support to your own classes, refer to the [documentation](https://rfl.getml.com/docs-readme) for details.
## Installation
The following compilers are supported:
- GCC 11.4 or higher
- Clang 14.0 or higher
- MSVC 17.8 (19.38) or higher
### Using vcpkg
https://vcpkg.io/en/package/reflectcpp
### Using Conan
https://conan.io/center/recipes/reflect-cpp
### Compilation using cmake
This will compile reflect-cpp with JSON support only. You can then include reflect-cpp in your project and link to the binary.
```bash
cmake -S . -B build -DCMAKE_CXX_STANDARD=20 -DCMAKE_BUILD_TYPE=Release
cmake --build build -j 4 # gcc, clang
cmake --build build --config Release -j 4 # MSVC
```
If you need support for any other supported [serialization formats](#serialization-formats), refer to the [documentation](https://rfl.getml.com/docs-readme) for installation instructions.
You can also [include the source files](https://rfl.getml.com/install/#option-1-include-source-files-into-your-own-build) into your build or compile it using [cmake and vcpkg.](https://rfl.getml.com/install/#option-3-compilation-using-cmake-and-vcpkg) For detailed installation instructions, please refer to the [install guide](https://rfl.getml.com/install).
## The team behind reflect-cpp
reflect-cpp has been developed by [getML (Code17 GmbH)](https://getml.com), a company specializing in software engineering and machine learning for enterprise applications. reflect-cpp is currently maintained by Patrick Urbanke and Manuel Bellersen, with major contributions coming from the community.
### Related projects
reflect-cpp was originally developed for [getml-community](https://github.com/getml/getml-community), the fastest open-source tool for feature engineering on relational data and time series. If you are interested in Data Science and/or Machine Learning, please check it out.
### Professional C++ Support
For comprehensive C++ support beyond the scope of GitHub discussions, we’re here to help! Reach out at [support@getml.com](mailto:support%40getml.com?subject=C++%20support%20request) to discuss any technical challenges or project requirements. We’re excited to support your work as independent software consultants.
## License
reflect-cpp is released under the MIT License. Refer to the LICENSE file for details.
reflect-cpp includes [YYJSON](https://github.com/ibireme/yyjson), the fastest JSON library currently in existence. YYJSON is written by YaoYuan and also released under the MIT License.
reflect-cpp includes [compile-time-regular-expressions](https://github.com/hanickadot/compile-time-regular-expressions). CTRE is written by Hana DusÃková and released under the Apache-2.0 License with LLVM exceptions.
|