1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#ifndef RFL_AVRO_READER_HPP_
#define RFL_AVRO_READER_HPP_
#include <avro.h>
#include <cstddef>
#include <exception>
#include <string>
#include <string_view>
#include <type_traits>
#include <vector>
#include "../Bytestring.hpp"
#include "../Result.hpp"
#include "../always_false.hpp"
#include "../internal/is_literal.hpp"
#include "../parsing/schemaful/IsSchemafulReader.hpp"
namespace rfl::avro {
struct Reader {
struct AVROInputArray {
const avro_value_t* val_;
};
struct AVROInputObject {
const avro_value_t* val_;
};
struct AVROInputMap {
const avro_value_t* val_;
};
struct AVROInputUnion {
const avro_value_t* val_;
};
struct AVROInputVar {
const avro_value_t* val_;
};
using InputArrayType = AVROInputArray;
using InputObjectType = AVROInputObject;
using InputMapType = AVROInputMap;
using InputUnionType = AVROInputUnion;
using InputVarType = AVROInputVar;
template <class T>
static constexpr bool has_custom_constructor =
(requires(InputVarType var) { T::from_avro_obj(var); });
bool is_empty(const InputVarType& _var) const noexcept {
return avro_value_get_type(_var.val_) == AVRO_NULL;
}
template <class T>
rfl::Result<T> to_basic_type(const InputVarType& _var) const noexcept {
const auto type = avro_value_get_type(_var.val_);
if constexpr (std::is_same<std::remove_cvref_t<T>, std::string>()) {
const char* c_str = nullptr;
size_t size = 0;
const auto err = avro_value_get_string(_var.val_, &c_str, &size);
if (err) {
return error("Could not cast to string.");
}
if (size == 0) {
return std::string("");
}
return std::string(c_str, size - 1);
} else if constexpr (std::is_same<std::remove_cvref_t<T>,
rfl::Bytestring>()) {
const void* ptr = nullptr;
size_t size = 0;
const auto err = avro_value_get_bytes(_var.val_, &ptr, &size);
if (err) {
return error("Could not cast to bytestring.");
}
const auto data = internal::ptr_cast<const std::byte*>(ptr);
return rfl::Bytestring(data, data + size - 1);
} else if constexpr (std::is_same<std::remove_cvref_t<T>, bool>()) {
if (type != AVRO_BOOLEAN) {
return rfl::error("Could not cast to boolean.");
}
int result = 0;
avro_value_get_boolean(_var.val_, &result);
return (result != 0);
} else if constexpr (std::is_floating_point<std::remove_cvref_t<T>>()) {
if (type == AVRO_DOUBLE) {
double result = 0.0;
const auto err = avro_value_get_double(_var.val_, &result);
if (err) {
return error("Could not cast to double.");
}
return static_cast<T>(result);
} else if (type == AVRO_FLOAT) {
float result = 0.0;
const auto err = avro_value_get_float(_var.val_, &result);
if (err) {
return error("Could not cast to float.");
}
return static_cast<T>(result);
} else {
return rfl::error(
"Could not cast to numeric value. The type must be float "
"or double.");
}
} else if constexpr (std::is_integral<std::remove_cvref_t<T>>()) {
if (type == AVRO_INT32) {
int32_t result = 0;
const auto err = avro_value_get_int(_var.val_, &result);
if (err) {
return error("Could not cast to int32.");
}
return static_cast<T>(result);
} else if (type == AVRO_INT64) {
int64_t result = 0;
const auto err = avro_value_get_long(_var.val_, &result);
if (err) {
return error("Could not cast to int64.");
}
return static_cast<T>(result);
} else {
return rfl::error(
"Could not cast to numeric value. The type must be integral.");
}
} else if constexpr (internal::is_literal_v<T>) {
int value = 0;
const auto err = avro_value_get_enum(_var.val_, &value);
if (err) {
return error("Could not cast to enum.");
}
return std::remove_cvref_t<T>::from_value(
static_cast<typename std::remove_cvref_t<T>::ValueType>(value));
} else {
static_assert(rfl::always_false_v<T>, "Unsupported type.");
}
}
rfl::Result<InputArrayType> to_array(
const InputVarType& _var) const noexcept {
if (avro_value_get_type(_var.val_) != AVRO_ARRAY) {
return error("Could not cast to an array.");
}
return InputArrayType{_var.val_};
}
rfl::Result<InputObjectType> to_object(
const InputVarType& _var) const noexcept {
const auto type = avro_value_get_type(_var.val_);
if (type != AVRO_RECORD) {
return error("Could not cast to an object.");
}
return InputObjectType{_var.val_};
}
rfl::Result<InputMapType> to_map(const InputVarType& _var) const noexcept {
const auto type = avro_value_get_type(_var.val_);
if (type != AVRO_MAP) {
return error("Could not cast to a map.");
}
return InputMapType{_var.val_};
}
rfl::Result<InputUnionType> to_union(
const InputVarType& _var) const noexcept {
const auto type = avro_value_get_type(_var.val_);
if (type != AVRO_UNION) {
return error("Could not cast to a union.");
}
return InputUnionType{_var.val_};
}
template <class ArrayReader>
std::optional<Error> read_array(const ArrayReader& _array_reader,
const InputArrayType& _arr) const noexcept {
size_t size = 0;
avro_value_get_size(_arr.val_, &size);
for (size_t ix = 0; ix < size; ++ix) {
avro_value_t element;
avro_value_get_by_index(_arr.val_, ix, &element, nullptr);
const auto err = _array_reader.read(InputVarType{&element});
if (err) {
return err;
}
}
return std::nullopt;
}
template <class MapReader>
std::optional<Error> read_map(const MapReader& _map_reader,
const InputMapType& _map) const noexcept {
size_t size = 0;
avro_value_get_size(_map.val_, &size);
for (size_t ix = 0; ix < size; ++ix) {
avro_value_t element;
const char* key = nullptr;
avro_value_get_by_index(_map.val_, ix, &element, &key);
_map_reader.read(std::string_view(key), InputVarType{&element});
}
return std::nullopt;
}
template <class ObjectReader>
std::optional<Error> read_object(const ObjectReader& _object_reader,
const InputObjectType& _obj) const noexcept {
size_t size = 0;
avro_value_get_size(_obj.val_, &size);
for (size_t ix = 0; ix < size; ++ix) {
avro_value_t element;
avro_value_get_by_index(_obj.val_, ix, &element, nullptr);
_object_reader.read(static_cast<int>(ix), InputVarType{&element});
}
return std::nullopt;
}
template <class VariantType, class UnionReaderType>
rfl::Result<VariantType> read_union(
const InputUnionType& _union) const noexcept {
int disc = 0;
auto err = avro_value_get_discriminant(_union.val_, &disc);
if (err) {
return error("Could not get the discriminant.");
}
avro_value_t value;
err = avro_value_get_current_branch(_union.val_, &value);
if (err) {
return error("Could not cast the union type.");
}
return UnionReaderType::read(*this, static_cast<size_t>(disc),
InputVarType{&value});
}
template <class T>
rfl::Result<T> use_custom_constructor(
const InputVarType& _var) const noexcept {
try {
return T::from_avro_obj(_var);
} catch (std::exception& e) {
return rfl::error(e.what());
}
}
};
static_assert(parsing::schemaful::IsSchemafulReader<Reader>,
"This must be a schemaful reader.");
} // namespace rfl::avro
#endif
|