1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
#ifndef RFL_PARSING_PARSER_DEFAULT_HPP_
#define RFL_PARSING_PARSER_DEFAULT_HPP_
#include <map>
#include <stdexcept>
#include <type_traits>
#include "../Bytestring.hpp"
#include "../Result.hpp"
#include "../always_false.hpp"
#include "../from_named_tuple.hpp"
#include "../internal/enums/StringConverter.hpp"
#include "../internal/has_reflection_method_v.hpp"
#include "../internal/has_reflection_type_v.hpp"
#include "../internal/has_reflector.hpp"
#include "../internal/is_basic_type.hpp"
#include "../internal/is_description.hpp"
#include "../internal/is_literal.hpp"
#include "../internal/is_underlying_enums_v.hpp"
#include "../internal/is_validator.hpp"
#include "../internal/processed_t.hpp"
#include "../internal/ptr_cast.hpp"
#include "../internal/to_ptr_named_tuple.hpp"
#include "../to_view.hpp"
#include "AreReaderAndWriter.hpp"
#include "Parent.hpp"
#include "Parser_base.hpp"
#include "call_destructors_where_necessary.hpp"
#include "is_tagged_union_wrapper.hpp"
#include "make_type_name.hpp"
#include "schema/Type.hpp"
#include "schemaful/IsSchemafulReader.hpp"
#include "schemaful/IsSchemafulWriter.hpp"
namespace rfl::parsing {
/// Default case - anything that cannot be explicitly matched.
template <class R, class W, class T, class ProcessorsType>
requires AreReaderAndWriter<R, W, T>
struct Parser {
public:
using InputVarType = typename R::InputVarType;
using ParentType = Parent<W>;
/// Expresses the variables as type T.
static Result<T> read(const R& _r, const InputVarType& _var) noexcept {
if constexpr (internal::has_read_reflector<T>) {
const auto wrap_in_t = [](auto _named_tuple) -> Result<T> {
try {
return Reflector<T>::to(_named_tuple);
} catch (std::exception& e) {
return error(e.what());
}
};
return Parser<R, W, typename Reflector<T>::ReflType,
ProcessorsType>::read(_r, _var)
.and_then(wrap_in_t);
} else if constexpr (schemaful::IsSchemafulReader<R> &&
internal::is_literal_v<T>) {
return _r.template to_basic_type<T>(_var);
} else if constexpr (R::template has_custom_constructor<T>) {
return _r.template use_custom_constructor<T>(_var);
} else {
if constexpr (internal::has_reflection_type_v<T>) {
using ReflectionType = std::remove_cvref_t<typename T::ReflectionType>;
const auto wrap_in_t = [](auto _named_tuple) -> Result<T> {
try {
return T{std::move(_named_tuple)};
} catch (std::exception& e) {
return error(e.what());
}
};
return Parser<R, W, ReflectionType, ProcessorsType>::read(_r, _var)
.and_then(wrap_in_t);
} else if constexpr (std::is_class_v<T> && std::is_aggregate_v<T>) {
if constexpr (ProcessorsType::default_if_missing_) {
return read_struct_with_default(_r, _var);
} else {
return read_struct(_r, _var);
}
} else if constexpr (std::is_enum_v<T>) {
if constexpr (ProcessorsType::underlying_enums_ ||
schemaful::IsSchemafulReader<R>) {
return static_cast<T>(
*_r.template to_basic_type<std::underlying_type_t<T>>(_var));
} else {
using StringConverter = internal::enums::StringConverter<T>;
return _r.template to_basic_type<std::string>(_var).and_then(
StringConverter::string_to_enum);
}
} else {
return _r.template to_basic_type<std::remove_cvref_t<T>>(_var);
}
}
}
template <class P>
static void write(const W& _w, const T& _var, const P& _parent) noexcept {
if constexpr (internal::has_write_reflector<T>) {
Parser<R, W, typename Reflector<T>::ReflType, ProcessorsType>::write(
_w, Reflector<T>::from(_var), _parent);
} else if constexpr (schemaful::IsSchemafulWriter<W> &&
internal::is_literal_v<T>) {
ParentType::add_value(_w, _var, _parent);
} else if constexpr (internal::has_reflection_type_v<T>) {
using ReflectionType = std::remove_cvref_t<typename T::ReflectionType>;
if constexpr (internal::has_reflection_method_v<T>) {
Parser<R, W, ReflectionType, ProcessorsType>::write(
_w, _var.reflection(), _parent);
} else {
const auto& [r] = _var;
Parser<R, W, ReflectionType, ProcessorsType>::write(_w, r, _parent);
}
} else if constexpr (std::is_class_v<T> && std::is_aggregate_v<T>) {
const auto ptr_named_tuple = ProcessorsType::template process<T>(
internal::to_ptr_named_tuple(_var));
using PtrNamedTupleType = std::remove_cvref_t<decltype(ptr_named_tuple)>;
Parser<R, W, PtrNamedTupleType, ProcessorsType>::write(
_w, ptr_named_tuple, _parent);
} else if constexpr (std::is_enum_v<T>) {
if constexpr (ProcessorsType::underlying_enums_ ||
schemaful::IsSchemafulWriter<W>) {
const auto val = static_cast<std::underlying_type_t<T>>(_var);
ParentType::add_value(_w, val, _parent);
} else {
using StringConverter = internal::enums::StringConverter<T>;
const auto str = StringConverter::enum_to_string(_var);
ParentType::add_value(_w, str, _parent);
}
} else {
ParentType::add_value(_w, _var, _parent);
}
}
/// Generates a schema for the underlying type.
static schema::Type to_schema(
std::map<std::string, schema::Type>* _definitions) {
using U = std::remove_cvref_t<T>;
using Type = schema::Type;
if constexpr (std::is_same<U, bool>()) {
return Type{Type::Boolean{}};
} else if constexpr (std::is_same<U, rfl::Bytestring>()) {
return Type{Type::Bytestring{}};
} else if constexpr (std::is_same<U, std::int32_t>()) {
return Type{Type::Int32{}};
} else if constexpr (std::is_same<U, std::int64_t>()) {
return Type{Type::Int64{}};
} else if constexpr (std::is_same<U, std::uint32_t>()) {
return Type{Type::UInt32{}};
} else if constexpr (std::is_same<U, std::uint64_t>()) {
return Type{Type::UInt64{}};
} else if constexpr (std::is_integral<U>()) {
return Type{Type::Integer{}};
} else if constexpr (std::is_same<U, float>()) {
return Type{Type::Float{}};
} else if constexpr (std::is_floating_point_v<U>) {
return Type{Type::Double{}};
} else if constexpr (std::is_same<U, std::string>()) {
return Type{Type::String{}};
} else if constexpr (rfl::internal::is_description_v<U>) {
return make_description<U>(_definitions);
} else if constexpr (std::is_enum_v<U>) {
return make_enum<U>(_definitions);
} else if constexpr (std::is_class_v<U> && std::is_aggregate_v<U>) {
return make_reference<U>(_definitions);
} else if constexpr (internal::is_literal_v<U>) {
return Type{Type::Literal{.values_ = U::strings()}};
} else if constexpr (internal::is_validator_v<U>) {
return make_validated<U>(_definitions);
} else if constexpr (internal::has_reflection_type_v<U>) {
return make_reference<U>(_definitions);
} else {
static_assert(rfl::always_false_v<U>, "Unsupported type.");
}
}
private:
template <class U>
static schema::Type make_description(
std::map<std::string, schema::Type>* _definitions) {
using Type = schema::Type;
return Type{Type::Description{
.description_ = typename U::Content().str(),
.type_ =
Ref<Type>::make(Parser<R, W, std::remove_cvref_t<typename U::Type>,
ProcessorsType>::to_schema(_definitions))}};
}
template <class U>
static schema::Type make_enum(
std::map<std::string, schema::Type>* _definitions) {
using Type = schema::Type;
using S = internal::enums::StringConverter<U>;
if constexpr (ProcessorsType::underlying_enums_ ||
schemaful::IsSchemafulReader<R>) {
return Type{Type::Integer{}};
} else if constexpr (S::is_flag_enum_) {
return Type{Type::String{}};
} else {
return Parser<R, W, typename S::NamesLiteral, ProcessorsType>::to_schema(
_definitions);
}
}
template <class U>
static schema::Type make_reference(
std::map<std::string, schema::Type>* _definitions) {
using Type = schema::Type;
const auto name = make_type_name<U>();
if (_definitions->find(name) == _definitions->end()) {
(*_definitions)[name] =
Type{Type::Integer{}}; // Placeholder to avoid infinite loop.
if constexpr (internal::has_reflection_type_v<U>) {
(*_definitions)[name] =
Parser<R, W, typename U::ReflectionType, ProcessorsType>::to_schema(
_definitions);
} else {
using NamedTupleType = internal::processed_t<U, ProcessorsType>;
(*_definitions)[name] =
Parser<R, W, NamedTupleType, ProcessorsType>::to_schema(
_definitions);
}
}
return Type{Type::Reference{name}};
}
template <class U>
static schema::Type make_validated(
std::map<std::string, schema::Type>* _definitions) {
using Type = schema::Type;
using ReflectionType = std::remove_cvref_t<typename U::ReflectionType>;
using ValidationType = std::remove_cvref_t<typename U::ValidationType>;
return Type{Type::Validated{
.type_ = Ref<Type>::make(
Parser<R, W, ReflectionType, ProcessorsType>::to_schema(
_definitions)),
.validation_ = ValidationType::template to_schema<ReflectionType>()}};
}
/// The way this works is that we allocate space on the stack in this size of
/// the struct in which we then write the individual fields using
/// views and placement new. This is how we deal with the fact that some
/// fields might not be default-constructible.
static Result<T> read_struct(const R& _r, const InputVarType& _var) {
alignas(T) unsigned char buf[sizeof(T)]{};
auto ptr = internal::ptr_cast<T*>(&buf);
auto view = ProcessorsType::template process<T>(to_view(*ptr));
using ViewType = std::remove_cvref_t<decltype(view)>;
const auto [set, err] =
Parser<R, W, ViewType, ProcessorsType>::read_view(_r, _var, &view);
if (err) [[unlikely]] {
call_destructors_where_necessary(set, &view);
return error(err->what());
}
auto res = Result<T>(std::move(*ptr));
call_destructors_where_necessary(set, &view);
return res;
}
/// This is actually more straight-forward than the standard case - we just
/// allocate a struct and then fill it. But it is less efficient and it
/// assumes that all values on the struct have a default constructor, so we
/// only use it when the DefaultIfMissing preprocessor is added.
static Result<T> read_struct_with_default(const R& _r,
const InputVarType& _var) {
auto t = T{};
auto view = ProcessorsType::template process<T>(to_view(t));
using ViewType = decltype(view);
const auto err =
Parser<R, W, ViewType, ProcessorsType>::read_view_with_default(_r, _var,
&view);
if (err) [[unlikely]] {
return error(*err);
}
return t;
}
};
} // namespace rfl::parsing
#endif
|