File: processors.md

package info (click to toggle)
reflect-cpp 0.21.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,128 kB
  • sloc: cpp: 50,336; python: 139; makefile: 30; sh: 3
file content (484 lines) | stat: -rw-r--r-- 13,273 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# Processors 

Processors can be used to apply transformations to struct serialization and deserialization.

For instance, C++ [usually](http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rl-camel) uses `snake_case`, but JSON uses `camelCase`. One way to handle this is `rfl::Rename`, but a more automated way would be to use a *processor*:

```cpp
struct Person {
    std::string first_name;
    std::string last_name;
    std::vector<Person> children;
};

const auto homer =
    Person{.first_name = "Homer",
           .last_name = "Simpson",
           .age = 45};

const auto json_string = 
  rfl::json::write<rfl::SnakeCaseToCamelCase>(homer);

const auto homer2 = 
  rfl::json::read<Person, rfl::SnakeCaseToCamelCase>(json_string).value();
```

The resulting JSON string looks like this:

```json
{"firstName":"Homer","lastName":"Simpson","age":45}
```

## Supported processors

reflect-cpp currently supports the following processors:

- `rfl::AddStructName` 
- `rfl::AddTagsToVariants` 
- `rfl::AddNamespacedTagsToVariants` 
- `rfl::AllowRawPtrs` 
- `rfl::DefaultIfMissing` 
- `rfl::NoExtraFields` 
- `rfl::NoFieldNames` 
- `rfl::NoOptionals` 
- `rfl::UnderlyingEnums` 
- `rfl::SnakeCaseToCamelCase` 
- `rfl::SnakeCaseToPascalCase` 

### `rfl::AddStructName` 

It is also possible to add the struct name as an additional field, like this:

```cpp
const auto json_string = 
  rfl::json::write<rfl::AddStructName<"type">>(homer);

const auto homer2 = 
  rfl::json::read<Person, rfl::AddStructName<"type">>(json_string).value();
```

The resulting JSON string looks like this:

```json
{"type":"Person","first_name":"Homer","last_name":"Simpson","age":45}
```

### `rfl::AddTagsToVariants` 

This processor automatically adds tags to variants. Consider the following example:

```cpp
struct button_pressed_t {};

struct button_released_t {};

struct key_pressed_t {
  char key;
};

using my_event_type_t =
    std::variant<button_pressed_t, button_released_t, key_pressed_t, int>;
```

The problem here is that `button_pressed_t` and `button_released_t` virtually look
indistinguishable when they are serialized. The will both be serialized to `{}`.

But you can add this processor to automatically add tags and avoid the problem:

```cpp
const auto vec = std::vector<my_event_type_t>(
  {button_pressed_t{}, button_released_t{}, key_pressed_t{'c'}, 3});

const auto json_string = rfl::json::write<rfl::AddTagsToVariants>(vec);

rfl::json::write<std::vector<my_event_type_t>, rfl::AddTagsToVariants>(json_string);
```

`vec` will now be serialized as follows:

```json
[{"button_pressed_t":{}},{"button_released_t":{}},{"key_pressed_t":{"key":99}},{"int":3}]
```

You can also set your own custom tags like this:

```cpp
struct key_pressed_t {
  using Tag = rfl::Literal<"your_custom_tag">;
  char key;
};
```

`key_pressed_t` will now be serialized as follows:

```json
{"your_custom_tag":{"key":99}}
```

Note that there are other ways to address problems like this, for instance `rfl::TaggedUnion`.
Please refer to the relevant sections of the documentation.

### `rfl::AddNamespacedTagsToVariants`

This processor is similar to `rfl::AddTagsToVariants`, but instead of using just the struct name as the tag, it uses the full namespaced type name. This is particularly useful when you have:

1. Structs with the same name in different namespaces
2. Structs with `rfl::Generic` fields that would otherwise create naming conflicts

#### Use-case: Structs with the same name in different namespaces

Consider this example where `rfl::AddTagsToVariants` would fail:

```cpp
namespace Result {
  struct Message {
    std::string result;
  };
}

namespace Error {
  struct Message {
    std::string error;
    int error_id;
  };
}

using Messages = std::variant<Result::Message, Error::Message>;

const auto msgs = std::vector<Messages>{
  Result::Message{.result = "success"},
  Error::Message{.error = "failure", .error_id = 404}
};

// This would cause problems with rfl::AddTagsToVariants because both 
// structs have the same name "Message"

// But this works perfectly:
const auto json_string = rfl::json::write<rfl::AddNamespacedTagsToVariants>(msgs);
const auto msgs2 = rfl::json::read<std::vector<Messages>, rfl::AddNamespacedTagsToVariants>(json_string);
```

The resulting JSON includes the full namespace path:

```json
[
  {"Result::Message": {"result": "success"}},
  {"Error::Message": {"error": "failure", "error_id": 404}}
]
```

#### Use-case: Structs with `rfl::Generic` fields that would otherwise create naming conflicts

Another use case is with `rfl::Generic` fields, where multiple structs contain generic fields that would otherwise create naming conflicts:

```cpp
struct APIResult {
  rfl::Generic result;  // Could be string, number, object, etc.
};

struct APIError {
  rfl::Generic error;   // Could be string, number, object, etc.
};

using APIResponse = std::variant<APIResult, APIError>;

const auto response = APIResult{.result = std::string("200")};

// Without namespaces, both Generic fields would have the same tag name.
// With namespaces, they get unique identifiers:
const auto json_string = rfl::json::write<rfl::AddNamespacedTagsToVariants>(response);
```

This generates:

```json
{"APIResult": {"result": {"std::string": "200"}}}
```

#### When to use `rfl::AddNamespacedTagsToVariants` vs `rfl::AddTagsToVariants`

- Use `rfl::AddTagsToVariants` when struct names are unique and you want shorter, cleaner tags
- Use `rfl::AddNamespacedTagsToVariants` when you have naming conflicts or need to distinguish between types in different namespaces
- Custom tags (using `Tag = rfl::Literal<"custom_name">`) work with both processors and are not affected by the namespace handling

### `rfl::AllowRawPtrs`

By default, reflect-cpp does not allow *reading into* raw pointers, `std::string_view` or `std::span`. 
(*Writing from* raw pointers is never a problem.) This is because reading into raw pointers 
means that the library will allocate memory that the user then has to manually delete. This can lead to misunderstandings and memory leaks.

You might want to consider using some alternatives, such as `std::unique_ptr`, `rfl::Box`, 
`std::shared_ptr`, `rfl::Ref` or `std::optional`. 
But if you absolutely have to use raw pointers, you can pass `rfl::AllowRawPtrs` to `read`:

```cpp
struct Person {
  rfl::Rename<"firstName", std::string> first_name;
  rfl::Rename<"lastName", std::string> last_name = "Simpson";
  std::vector<Person>* children;`
};

const auto person =
  rfl::json::read<Person, rfl::AllowRawPtrs>(json_str);
```

However, you must keep in mind that it is now **YOUR** responsibility
to clean up. Otherwise, there **WILL** be a memory leak.

```cpp
void delete_raw_pointers(const Person& _person) {
    if (!_person.children) {
        return;
    }
    for (const auto& child: _person.children) {
        delete_raw_pointers(child);
    }
    delete _person.children;
}

delete_raw_pointers(person);
```

`std::string_view` and `std::span` must be cleaned up using `delete[]`, like this:

```cpp
delete[] person.string_view.data();

if(!person.span.empty()) {
    delete[] person.span.data();
}
```

### `rfl::DefaultIfMissing`

The `rfl::DefaultIfMissing` processor is only relevant for reading data. For writing data, it will make no difference.

Usually, when fields are missing in the input data, this will lead to an error 
(unless they are optional fields).
But if you pass the `rfl::DefaultIfMissing` processor, then missing fields will be
replaced by their default value.

For instance, consider the following struct:

```cpp
struct Person {
  std::string first_name;
  std::string last_name = "Simpson";
  std::string town;
};
```

Suppose you are reading a JSON like this:

```json
{"first_name":"Homer"}
```

```cpp
rfl::json::read<Person, rfl::DefaultIfMissing>(json_string);
```

Then the resulting struct will be equivalent to what you would
have gotten had you read the following JSON string:

```json
{"first_name":"Homer","last_name":"Simpson","town":""}
```

`last_name` and `town` have been replaced by the default values.
Because you have not passed a default value to town, the default value
of the type is used instead.

### `rfl::NoExtraFields`

When reading an object and the object contains a field that cannot be 
matched to any of the fields in the struct, that field is simply ignored.

However, when `rfl::NoExtraFields` is added to `read`, then such extra fields
will lead to an error. 

This can be overriden by adding `rfl::ExtraFields` to the struct.

Example:

```cpp
struct Person {
  std::string first_name;
  std::string last_name = "Simpson";
};
```

```json
{"first_name":"Homer","last_name":"Simpson","extra_field":0}
```

If you call `rfl::json::read<Person>(json_string)`, then `extra_field` will 
simply be ignored.

But if you call `rfl::json::read<Person, rfl::NoExtraFields>(json_string)`,
you will get an error.

However, suppose the struct looked like this:

```cpp
struct Person {
  std::string first_name;
  std::string last_name = "Simpson";
  rfl::ExtraFields<int> extras;
};
```

In this case, `rfl::json::read<Person, rfl::NoExtraFields>(json_string)`
will not fail, because `extra_field` would be included in `extras`.

### `rfl::NoFieldNames`

We can also remove the field names altogether: 

```cpp
const auto json_string = 
  rfl::json::write<rfl::NoFieldNames>(homer);

const auto homer2 = 
  rfl::json::read<Person, rfl::NoFieldNames>(json_string).value();
```

The resulting JSON string looks like this:

```json
["Homer","Simpson",45]
```

This is particularly relevant for binary formats, which do not emphasize readability,
like msgpack or flexbuffers. Removing the field names can reduce the size of the
resulting bytestrings and significantly speed up read and write time, 
depending on the dataset.

However, it makes it more difficult to maintain backwards compatability.

Note that `rfl::NoFieldNames` is not supported for BSON, TOML, XML, or YAML, due
to limitations of these formats. 

### `rfl::NoOptionals`

As we have seen in the section on optional fields, when a `std::optional` is
`std::nullopt`, it is usually not written at all. But if you want them to be explicitly
written as `null`, you can use this processor. The same thing applies to `std::shared_ptr` and 
`std::unique_ptr`.

```cpp
struct Person {
  std::string first_name;
  std::string last_name = "Simpson";
  std::optional<std::string> town = std::nullopt;
};

const auto homer = Person{.first_name = "Homer"};

rfl::json::write<rfl::NoOptionals>(homer);
```

The resulting JSON string looks like this:

```json
{"first_name":"Homer","last_name":"Simpson","town":null}
```

By default, `rfl::json::read` will accept both `"town":null` and just 
leaving out the field `town`. However, if you want to require the field
`town` to be included, you can add `rfl::NoOptionals` to `read`:

```
rfl::json::read<Person, rfl::NoOptionals>(json_string);
```

### `rfl::UnderlyingEnums`

By passing the processor `rfl::UnderlyingEnums`, fields of the enum type will be written and read as integers

```cpp
enum class Color { red, green, blue, yellow };

struct Circle {
  float radius;
  Color color;
};

const auto circle = Circle{.radius = 2.0, .color = Color::green};

rfl::json::write<rfl::UnderlyingEnums>(circle);
```

The resulting JSON string looks like this:

```json
{"radius":2.0,"color":1}
```

### `rfl::SnakeCaseToCamelCase`

Please refer to the example above.

### `rfl::SnakeCaseToPascalCase`

If you want `PascalCase` instead of `camelCase`, you can use the appropriate processor:

```cpp
const auto json_string = 
  rfl::json::write<rfl::SnakeCaseToPascalCase>(homer);

const auto homer2 = 
  rfl::json::read<Person, rfl::SnakeCaseToPascalCase>(json_string).value();
```

The resulting JSON string looks like this:

```json
{"FirstName":"Homer","LastName":"Simpson","Age":45}
```

## Combining several processors

You can combine several processors:

```cpp
const auto json_string = 
  rfl::json::write<rfl::SnakeCaseToCamelCase, rfl::AddStructName<"type">>(homer);

const auto homer2 = 
  rfl::json::read<Person, rfl::SnakeCaseToCamelCase, rfl::AddStructName<"type">>(json_string).value();
```

The resulting JSON string looks like this:

```json
{"type":"Person","firstName":"Homer","lastName":"Simpson","age":45}
```

When you have several processors, it is probably more convenient to combine them like this:

```cpp
using Processors = rfl::Processors<
    rfl::SnakeCaseToCamelCase, rfl::AddStructName<"type">>;

const auto json_string = rfl::json::write<Processors>(homer);

const auto homer2 = rfl::json::read<Person, Processors>(json_string).value();
```

The resulting JSON string looks like this:

```json
{"type":"Person","firstName":"Homer","lastName":"Simpson","age":45}
```

## Writing your own processors

In principle, writing your own processors is not very difficult. You need to define a struct, which takes has a static method called `process` taking a named tuple as an input and then returning a modified named tuple. The `process` method should accept the type of the original struct as a template parameter.

```cpp
struct MyOwnProcessor {
  template <class StructType>
  static auto process(auto&& _named_tuple) {...}
};
```