1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#ifndef RFL_BOX_HPP_
#define RFL_BOX_HPP_
#include <memory>
#include <stdexcept>
#include "Result.hpp"
namespace rfl {
enum class Copyability {
COPYABLE,
NON_COPYABLE
};
/// The Box class behaves very similarly to the unique_ptr, but unlike the
/// unique_ptr, it is 100% guaranteed to be filled at all times (unless the user
/// tries to access it after calling std::move does something else that is
/// clearly bad practice).
///
/// By default Box behaves like a unique_ptr in relation to copying, but it can be
/// configured to add copy constructor and assignment operators that call the
/// same function of the contained type T.
template <class T, Copyability C = Copyability::NON_COPYABLE>
class Box {
public:
/// The only way of creating new boxes is
/// Box<T>::make(...).
template <class... Args>
static Box make(Args&&... _args) {
return Box(std::make_unique<T>(std::forward<Args>(_args)...));
}
/// You can generate them from unique_ptrs as well, in which case it will
/// return an Error, if the unique_ptr is not set.
static Result<Box> make(std::unique_ptr<T>&& _ptr) {
if (!_ptr) {
return error("std::unique_ptr was a nullptr.");
}
return Box(std::move(_ptr));
}
Box() : ptr_(std::make_unique<T>()) {}
/// Copy constructor if copyable
Box(const Box& _other) requires (C == Copyability::COPYABLE)
{
ptr_ = std::make_unique<T>(*_other);
}
/// Copy constructor if not copyable
Box(const Box& _other) requires (C == Copyability::NON_COPYABLE) = delete;
Box(Box&& _other) = default;
template <class U, Copyability C2>
Box(Box<U, C2>&& _other) noexcept
: ptr_(std::forward<std::unique_ptr<U>>(_other.ptr())) {}
~Box() = default;
/// Returns a pointer to the underlying object
T* get() const { return ptr_.get(); }
/// Copy assignment operator if copyable
Box& operator=(const Box<T>& other) requires (C == Copyability::COPYABLE) {
if(this != &other) {
ptr_ = std::make_unique<T>(*other);
}
return *this;
}
/// Copy assignment operator if not copyable
Box& operator=(const Box& _other) requires (C == Copyability::NON_COPYABLE) = delete;
/// Move assignment operator
Box& operator=(Box&& _other) noexcept = default;
/// Move assignment operator
template <class U>
Box& operator=(Box<U>&& _other) noexcept {
ptr_ = std::forward<std::unique_ptr<U>>(_other.ptr());
return *this;
}
/// Returns the underlying object.
T& operator*() { return *ptr_; }
/// Returns the underlying object.
T& operator*() const { return *ptr_; }
/// Returns the underlying object.
T* operator->() { return ptr_.get(); }
/// Returns the underlying object.
T* operator->() const { return ptr_.get(); }
/// Returns the underlying unique_ptr
std::unique_ptr<T>& ptr() { return ptr_; }
/// Returns the underlying unique_ptr
const std::unique_ptr<T>& ptr() const { return ptr_; }
private:
/// Only make is allowed to use this constructor.
explicit Box(std::unique_ptr<T>&& _ptr) : ptr_(std::move(_ptr)) {}
private:
/// The underlying unique_ptr_
std::unique_ptr<T> ptr_;
};
/// Generates a new Ref<T>.
template <class T, class... Args>
auto make_box(Args&&... _args) {
return Box<T>::make(std::forward<Args>(_args)...);
}
/// Template specialization for a box that is copyable.
template<typename T>
using CopyableBox = Box<T, Copyability::COPYABLE>;
template <class T, class... Args>
auto make_copyable_box(Args&&... _args) {
return CopyableBox<T>::make(std::forward<Args>(_args)...);
}
template <class T1, class T2>
inline auto operator<=>(const Box<T1>& _b1, const Box<T2>& _b2) {
return _b1.ptr() <=> _b2.ptr();
}
template <class CharT, class Traits, class T>
inline std::basic_ostream<CharT, Traits>& operator<<(
std::basic_ostream<CharT, Traits>& _os, const Box<T>& _b) {
_os << _b.get();
return _os;
}
} // namespace rfl
namespace std {
template <class T>
struct hash<rfl::Box<T>> {
size_t operator()(const rfl::Box<T>& _b) const {
return hash<unique_ptr<T>>()(_b.ptr());
}
};
template <class T>
inline void swap(rfl::Box<T>& _b1, rfl::Box<T>& _b2) {
return swap(_b1.ptr(), _b2.ptr());
}
} // namespace std
#endif
|