File: Box.hpp

package info (click to toggle)
reflect-cpp 0.21.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 13,128 kB
  • sloc: cpp: 50,336; python: 139; makefile: 30; sh: 3
file content (160 lines) | stat: -rw-r--r-- 4,232 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#ifndef RFL_BOX_HPP_
#define RFL_BOX_HPP_

#include <memory>
#include <stdexcept>

#include "Result.hpp"

namespace rfl {


enum class Copyability {
    COPYABLE,
    NON_COPYABLE
};

/// The Box class behaves very similarly to the unique_ptr, but unlike the
/// unique_ptr, it is 100% guaranteed to be filled at all times (unless the user
/// tries to access it after calling std::move does something else that is
/// clearly bad practice).
///
/// By default Box behaves like a unique_ptr in relation to copying, but it can be
/// configured to add copy constructor and assignment operators that call the
/// same function of the contained type T.

template <class T, Copyability C = Copyability::NON_COPYABLE>
class Box {
 public:
  /// The only way of creating new boxes is
  /// Box<T>::make(...).
  template <class... Args>
  static Box make(Args&&... _args) {
    return Box(std::make_unique<T>(std::forward<Args>(_args)...));
  }

  /// You can generate them from unique_ptrs as well, in which case it will
  /// return an Error, if the unique_ptr is not set.
  static Result<Box> make(std::unique_ptr<T>&& _ptr) {
    if (!_ptr) {
      return error("std::unique_ptr was a nullptr.");
    }
    return Box(std::move(_ptr));
  }

  Box() : ptr_(std::make_unique<T>()) {}

  /// Copy constructor if copyable
  Box(const Box& _other) requires (C == Copyability::COPYABLE)
  {
    ptr_ = std::make_unique<T>(*_other);
  }

  /// Copy constructor if not copyable
  Box(const Box& _other) requires (C == Copyability::NON_COPYABLE) = delete;

  Box(Box&& _other) = default;

  template <class U, Copyability C2>
  Box(Box<U, C2>&& _other) noexcept
      : ptr_(std::forward<std::unique_ptr<U>>(_other.ptr())) {}

  ~Box() = default;

  /// Returns a pointer to the underlying object
  T* get() const { return ptr_.get(); }

  /// Copy assignment operator if copyable
  Box& operator=(const Box<T>& other) requires (C == Copyability::COPYABLE) {
    if(this != &other) {
      ptr_ = std::make_unique<T>(*other);
    }
    return *this;
  }

  /// Copy assignment operator if not copyable
  Box& operator=(const Box& _other) requires (C == Copyability::NON_COPYABLE)  = delete;

  /// Move assignment operator
  Box& operator=(Box&& _other) noexcept = default;

  /// Move assignment operator
  template <class U>
  Box& operator=(Box<U>&& _other) noexcept {
    ptr_ = std::forward<std::unique_ptr<U>>(_other.ptr());
    return *this;
  }

  /// Returns the underlying object.
  T& operator*() { return *ptr_; }

  /// Returns the underlying object.
  T& operator*() const { return *ptr_; }

  /// Returns the underlying object.
  T* operator->() { return ptr_.get(); }

  /// Returns the underlying object.
  T* operator->() const { return ptr_.get(); }

  /// Returns the underlying unique_ptr
  std::unique_ptr<T>& ptr() { return ptr_; }

  /// Returns the underlying unique_ptr
  const std::unique_ptr<T>& ptr() const { return ptr_; }

 private:
  /// Only make is allowed to use this constructor.
  explicit Box(std::unique_ptr<T>&& _ptr) : ptr_(std::move(_ptr)) {}

 private:
  /// The underlying unique_ptr_
  std::unique_ptr<T> ptr_;
};

/// Generates a new Ref<T>.
template <class T, class... Args>
auto make_box(Args&&... _args) {
  return Box<T>::make(std::forward<Args>(_args)...);
}

/// Template specialization for a box that is copyable.
template<typename T>
using CopyableBox = Box<T, Copyability::COPYABLE>;

template <class T, class... Args>
auto make_copyable_box(Args&&... _args) {
    return CopyableBox<T>::make(std::forward<Args>(_args)...);
}

template <class T1, class T2>
inline auto operator<=>(const Box<T1>& _b1, const Box<T2>& _b2) {
  return _b1.ptr() <=> _b2.ptr();
}

template <class CharT, class Traits, class T>
inline std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& _os, const Box<T>& _b) {
  _os << _b.get();
  return _os;
}

}  // namespace rfl

namespace std {

template <class T>
struct hash<rfl::Box<T>> {
  size_t operator()(const rfl::Box<T>& _b) const {
    return hash<unique_ptr<T>>()(_b.ptr());
  }
};

template <class T>
inline void swap(rfl::Box<T>& _b1, rfl::Box<T>& _b2) {
  return swap(_b1.ptr(), _b2.ptr());
}

}  // namespace std

#endif