1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <sstream>
#include "census/ncensus.h"
#include "census/ngluingpermsearcher.h"
#include "triangulation/nedge.h"
#include "triangulation/nfacepair.h"
#include "triangulation/ntriangulation.h"
#include "utilities/boostutils.h"
#include "utilities/memutils.h"
namespace regina {
const unsigned NClosedPrimeMinSearcher::EDGE_CHAIN_END = 1;
const unsigned NClosedPrimeMinSearcher::EDGE_CHAIN_INTERNAL_FIRST = 2;
const unsigned NClosedPrimeMinSearcher::EDGE_CHAIN_INTERNAL_SECOND = 3;
const unsigned NClosedPrimeMinSearcher::EDGE_DOUBLE_FIRST = 4;
const unsigned NClosedPrimeMinSearcher::EDGE_DOUBLE_SECOND = 5;
const unsigned NClosedPrimeMinSearcher::EDGE_MISC = 6;
const char NClosedPrimeMinSearcher::VLINK_CLOSED = 1;
const char NClosedPrimeMinSearcher::VLINK_NON_SPHERE = 2;
const char NClosedPrimeMinSearcher::ECLASS_TWISTED = 1;
const char NClosedPrimeMinSearcher::ECLASS_LOWDEG = 2;
const char NClosedPrimeMinSearcher::ECLASS_HIGHDEG = 4;
const char NClosedPrimeMinSearcher::ECLASS_CONE = 8;
const char NClosedPrimeMinSearcher::ECLASS_L31 = 16;
const int NClosedPrimeMinSearcher::vertexLinkNextFace[4][4] = {
{ -1, 2, 3, 1},
{ 3, -1, 0, 2},
{ 1, 3, -1, 0},
{ 1, 2, 0, -1}
};
const unsigned NClosedPrimeMinSearcher::coneEdge[12][2] = {
{ 0, 1 }, { 0, 2 }, { 1, 2 }, { 0, 3 }, { 0, 4 }, { 3, 4 },
{ 1, 3 }, { 1, 5 }, { 3, 5 }, { 2, 4 }, { 2, 5 }, { 4, 5 },
};
const char NClosedPrimeMinSearcher::coneNoTwist[12] = {
1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1
};
const char NClosedPrimeMinSearcher::dataTag_ = 'c';
void NClosedPrimeMinSearcher::TetVertexState::dumpData(std::ostream& out)
const {
// Be careful with twistUp, which is a char but which should be
// written as an int.
out << parent << ' ' << rank << ' ' << bdry << ' '
<< (twistUp ? 1 : 0) << ' ' << (hadEqualRank ? 1 : 0) << ' '
<< static_cast<int>(bdryEdges) << ' '
<< bdryNext[0] << ' ' << bdryNext[1] << ' '
<< static_cast<int>(bdryTwist[0]) << ' '
<< static_cast<int>(bdryTwist[1]) << ' '
<< bdryNextOld[0] << ' ' << bdryNextOld[1] << ' '
<< static_cast<int>(bdryTwistOld[0]) << ' '
<< static_cast<int>(bdryTwistOld[1]);
}
bool NClosedPrimeMinSearcher::TetVertexState::readData(std::istream& in,
unsigned long nStates) {
in >> parent >> rank >> bdry;
// twistUp is a char, but we need to read it as an int.
int twist;
in >> twist;
twistUp = twist;
// hadEqualRank is a bool, but we need to read it as an int.
int bRank;
in >> bRank;
hadEqualRank = bRank;
// More chars to ints coming.
int bVal;
in >> bVal; bdryEdges = bVal;
in >> bdryNext[0] >> bdryNext[1];
in >> bVal; bdryTwist[0] = bVal;
in >> bVal; bdryTwist[1] = bVal;
in >> bdryNextOld[0] >> bdryNextOld[1];
in >> bVal; bdryTwistOld[0] = bVal;
in >> bVal; bdryTwistOld[1] = bVal;
if (parent < -1 || parent >= static_cast<long>(nStates))
return false;
if (rank >= nStates)
return false;
if (bdry > 3 * nStates)
return false;
if (twist != 1 && twist != 0)
return false;
if (bRank != 1 && bRank != 0)
return false;
if (bdryEdges > 3) /* Never < 0 since this is unsigned. */
return false;
if (bdryNext[0] < 0 || bdryNext[0] >= static_cast<long>(nStates))
return false;
if (bdryNext[1] < 0 || bdryNext[1] >= static_cast<long>(nStates))
return false;
if (bdryNextOld[0] < -1 || bdryNext[0] >= static_cast<long>(nStates))
return false;
if (bdryNextOld[1] < -1 || bdryNextOld[1] >= static_cast<long>(nStates))
return false;
if (bdryTwist[0] < 0 || bdryTwist[0] > 1)
return false;
if (bdryTwist[1] < 0 || bdryTwist[1] > 1)
return false;
if (bdryTwistOld[0] < 0 || bdryTwistOld[0] > 1)
return false;
if (bdryTwistOld[1] < 0 || bdryTwistOld[1] > 1)
return false;
return true;
}
void NClosedPrimeMinSearcher::TetEdgeState::dumpData(std::ostream& out) const {
// Be careful with twistUp, which is a char but which should be
// written as an int.
out << parent << ' ' << rank << ' ' << size << ' '
<< (bounded ? 1 : 0) << ' ' << (twistUp ? 1 : 0) << ' '
<< (hadEqualRank ? 1 : 0);
}
bool NClosedPrimeMinSearcher::TetEdgeState::readData(std::istream& in,
unsigned long nStates) {
in >> parent >> rank >> size;
// bounded is a bool, but we need to read it as an int.
int bBounded;
in >> bBounded;
bounded = bBounded;
// twistUp is a char, but we need to read it as an int.
int twist;
in >> twist;
twistUp = twist;
// hadEqualRank is a bool, but we need to read it as an int.
int bRank;
in >> bRank;
hadEqualRank = bRank;
if (parent < -1 || parent >= static_cast<long>(nStates))
return false;
if (rank >= nStates)
return false;
if (size >= nStates)
return false;
if (bBounded != 1 && bBounded != 0)
return false;
if (twist != 1 && twist != 0)
return false;
if (bRank != 1 && bRank != 0)
return false;
return true;
}
NClosedPrimeMinSearcher::NClosedPrimeMinSearcher(const NFacePairing* pairing,
const NFacePairingIsoList* autos, bool orientableOnly,
UseGluingPerms use, void* useArgs) :
NGluingPermSearcher(pairing, autos, orientableOnly,
true /* finiteOnly */,
NCensus::PURGE_NON_MINIMAL_PRIME | NCensus::PURGE_P2_REDUCIBLE,
use, useArgs) {
initOrder();
}
void NClosedPrimeMinSearcher::initOrder() {
// Preconditions:
// Only closed prime minimal P2-irreducible triangulations are needed.
// The given face pairing is closed with order >= 3.
// ---------- Selecting an ordering of faces ----------
// We fill permutations in the order:
// 1. One-ended chains (== layered solid tori) from loop to
// boundary, though chains may be interlaced in the
// processing order;
// 2. Everything else ordered by tetrahedron faces.
//
// Both permutations for each double edge will be processed
// consecutively, the permutation for the smallest face involved
// in the double edge being processed first.
//
// Note from the tests above that there are no triple edges.
unsigned nTets = getNumberOfTetrahedra();
order = new NTetFace[nTets * 2];
orderType = new unsigned[nTets * 2];
bool* orderAssigned = new bool[nTets * 4];
/**< Have we placed a tetrahedron face or its partner in the
order[] array yet? */
// Hunt for structures within the face pairing graph.
NTetFace face, adj;
unsigned orderDone = 0;
std::fill(orderAssigned, orderAssigned + 4 * nTets, false);
// Begin by searching for tetrahedra that are joined to themselves.
// Note that each tetrahedra can be joined to itself at most once,
// since we are guaranteed that the face pairing is connected with
// order >= 3.
for (face.setFirst(); ! face.isPastEnd(nTets, true); face++) {
if (orderAssigned[face.tet * 4 + face.face])
continue;
adj = (*pairing)[face];
if (adj.tet != face.tet)
continue;
order[orderDone] = face;
orderType[orderDone] = EDGE_CHAIN_END;
orderAssigned[face.tet * 4 + face.face] = true;
orderAssigned[adj.tet * 4 + adj.face] = true;
orderDone++;
}
// Record the number of one-ended chains.
unsigned nChains = orderDone;
// Continue by following each one-ended chain whose base was
// identified in the previous loop.
unsigned i;
int tet;
NTetFace dest1, dest2;
NFacePair faces;
for (i = 0; i < nChains; i++) {
tet = order[i].tet;
faces = NFacePair(order[i].face,
(*pairing)[order[i]].face).complement();
dest1 = pairing->dest(tet, faces.lower());
dest2 = pairing->dest(tet, faces.upper());
// Currently tet and faces refer to the two faces of the base
// tetrahedron that are pointing outwards.
while (dest1.tet == dest2.tet && dest1.tet != tet &&
(! orderAssigned[tet * 4 + faces.lower()]) &&
(! orderAssigned[tet * 4 + faces.upper()])) {
// Insert this pair of edges into the ordering and follow
// the chain.
orderType[orderDone] = EDGE_CHAIN_INTERNAL_FIRST;
orderType[orderDone + 1] = EDGE_CHAIN_INTERNAL_SECOND;
if (tet < dest1.tet) {
order[orderDone] = NTetFace(tet, faces.lower());
order[orderDone + 1] = NTetFace(tet, faces.upper());
}
orderAssigned[tet * 4 + faces.lower()] = true;
orderAssigned[tet * 4 + faces.upper()] = true;
orderAssigned[dest1.tet * 4 + dest1.face] = true;
orderAssigned[dest2.tet * 4 + dest2.face] = true;
faces = NFacePair(dest1.face, dest2.face);
if (dest1.tet < tet) {
order[orderDone] = NTetFace(dest1.tet, faces.lower());
order[orderDone + 1] = NTetFace(dest1.tet, faces.upper());
}
faces = faces.complement();
tet = dest1.tet;
dest1 = pairing->dest(tet, faces.lower());
dest2 = pairing->dest(tet, faces.upper());
orderDone += 2;
}
}
// Record the number of edges in the face pairing graph
// belonging to one-ended chains.
nChainEdges = orderDone;
// Run through the remaining faces.
for (face.setFirst(); ! face.isPastEnd(nTets, true); face++)
if (! orderAssigned[face.tet * 4 + face.face]) {
order[orderDone] = face;
if (face.face < 3 && pairing->dest(boost::next(face)).tet ==
pairing->dest(face).tet)
orderType[orderDone] = EDGE_DOUBLE_FIRST;
else if (face.face > 0 && pairing->dest(boost::prior(face)).tet ==
pairing->dest(face).tet)
orderType[orderDone] = EDGE_DOUBLE_SECOND;
else
orderType[orderDone] = EDGE_MISC;
orderDone++;
adj = (*pairing)[face];
orderAssigned[face.tet * 4 + face.face] = true;
orderAssigned[adj.tet * 4 + adj.face] = true;
}
// All done for the order[] array. Tidy up.
delete[] orderAssigned;
// ---------- Calculating the possible gluing permutations ----------
// For each face in the order[] array of type EDGE_CHAIN_END or
// EDGE_CHAIN_INTERNAL_FIRST, we calculate the two gluing permutations
// that must be tried.
//
// For the remaining faces we try all possible permutations.
chainPermIndices = (nChainEdges == 0 ? 0 : new int[nChainEdges * 2]);
NFacePair facesAdj, comp, compAdj;
NPerm trial1, trial2;
for (i = 0; i < nChainEdges; i++) {
if (orderType[i] == EDGE_CHAIN_END) {
faces = NFacePair(order[i].face, pairing->dest(order[i]).face);
comp = faces.complement();
// order[i].face == faces.lower(),
// pairing->dest(order[i]).face == faces.upper().
chainPermIndices[2 * i] = gluingToIndex(order[i],
NPerm(faces.lower(), faces.upper(),
faces.upper(), comp.lower(),
comp.lower(), comp.upper(),
comp.upper(), faces.lower()));
chainPermIndices[2 * i + 1] = gluingToIndex(order[i],
NPerm(faces.lower(), faces.upper(),
faces.upper(), comp.upper(),
comp.upper(), comp.lower(),
comp.lower(), faces.lower()));
} else if (orderType[i] == EDGE_CHAIN_INTERNAL_FIRST) {
faces = NFacePair(order[i].face, order[i + 1].face);
comp = faces.complement();
facesAdj = NFacePair(pairing->dest(order[i]).face,
pairing->dest(order[i + 1]).face);
compAdj = facesAdj.complement();
// order[i].face == faces.lower(),
// order[i + 1].face == faces.upper(),
// pairing->dest(order[i]).face == facesAdj.lower().
// pairing->dest(order[i + 1]).face == facesAdj.upper().
trial1 = NPerm(faces.lower(), facesAdj.lower(),
faces.upper(), compAdj.lower(),
comp.lower(), compAdj.upper(),
comp.upper(), facesAdj.upper());
trial2 = NPerm(faces.lower(), facesAdj.lower(),
faces.upper(), compAdj.upper(),
comp.lower(), compAdj.lower(),
comp.upper(), facesAdj.upper());
if (trial1.compareWith(trial2) < 0) {
chainPermIndices[2 * i] = gluingToIndex(order[i], trial1);
chainPermIndices[2 * i + 2] = gluingToIndex(order[i + 1],
NPerm(faces.lower(), compAdj.upper(),
faces.upper(), facesAdj.upper(),
comp.lower(), facesAdj.lower(),
comp.upper(), compAdj.lower()));
} else {
chainPermIndices[2 * i] = gluingToIndex(order[i], trial2);
chainPermIndices[2 * i + 2] = gluingToIndex(order[i + 1],
NPerm(faces.lower(), compAdj.lower(),
faces.upper(), facesAdj.upper(),
comp.lower(), facesAdj.lower(),
comp.upper(), compAdj.upper()));
}
trial1 = NPerm(faces.lower(), facesAdj.lower(),
faces.upper(), compAdj.lower(),
comp.lower(), facesAdj.upper(),
comp.upper(), compAdj.upper());
trial2 = NPerm(faces.lower(), facesAdj.lower(),
faces.upper(), compAdj.upper(),
comp.lower(), facesAdj.upper(),
comp.upper(), compAdj.lower());
if (trial1.compareWith(trial2) < 0) {
chainPermIndices[2 * i + 1] = gluingToIndex(order[i], trial1);
chainPermIndices[2 * i + 3] = gluingToIndex(order[i + 1],
NPerm(faces.lower(), compAdj.upper(),
faces.upper(), facesAdj.upper(),
comp.lower(), compAdj.lower(),
comp.upper(), facesAdj.lower()));
} else {
chainPermIndices[2 * i + 1] = gluingToIndex(order[i], trial2);
chainPermIndices[2 * i + 3] = gluingToIndex(order[i + 1],
NPerm(faces.lower(), compAdj.lower(),
faces.upper(), facesAdj.upper(),
comp.lower(), compAdj.upper(),
comp.upper(), facesAdj.lower()));
}
}
}
// ---------- Tracking of vertex / edge equivalence classes ----------
nVertexClasses = nTets * 4;
vertexState = new TetVertexState[nTets * 4];
vertexStateChanged = new int[nTets * 8];
std::fill(vertexStateChanged, vertexStateChanged + nTets * 8, -1);
for (i = 0; i < nTets * 4; i++) {
vertexState[i].bdryEdges = 3;
vertexState[i].bdryNext[0] = vertexState[i].bdryNext[1] = i;
vertexState[i].bdryTwist[0] = vertexState[i].bdryTwist[1] = 0;
// Initialise the backup members also so we're not writing
// uninitialised data via dumpData().
vertexState[i].bdryNextOld[0] = vertexState[i].bdryNextOld[1] = -1;
vertexState[i].bdryTwistOld[0] = vertexState[i].bdryTwistOld[1] = 0;
}
nEdgeClasses = nTets * 6;
edgeState = new TetEdgeState[nTets * 6];
edgeStateChanged = new int[nTets * 8];
std::fill(edgeStateChanged, edgeStateChanged + nTets * 8, -1);
#if PRUNE_HIGH_DEG_EDGE_SET
highDegSum = 0;
highDegBound = 3 * nTets - 3;
#endif
}
// TODO (net): See what was removed when we brought in vertex link checking.
void NClosedPrimeMinSearcher::runSearch(long maxDepth) {
// Preconditions:
// Only closed prime minimal P2-irreducible triangulations are needed.
// The given face pairing is closed with order >= 3.
unsigned nTets = getNumberOfTetrahedra();
if (maxDepth < 0) {
// Larger than we will ever see (and in fact grossly so).
maxDepth = nTets * 4 + 1;
}
if (! started) {
// Search initialisation.
started = true;
// Begin by testing for face pairings that can never lead to such a
// triangulation.
if (pairing->hasTripleEdge() ||
pairing->hasBrokenDoubleEndedChain() ||
pairing->hasOneEndedChainWithDoubleHandle() ||
pairing->hasOneEndedChainWithStrayBigon() ||
pairing->hasWedgedDoubleEndedChain() ||
pairing->hasTripleOneEndedChain()) {
use_(0, useArgs_);
return;
}
orderElt = 0;
if (nChainEdges < nTets * 2)
orientation[order[nChainEdges].tet] = 1;
}
// Is it a partial search that has already finished?
if (orderElt == static_cast<int>(nTets) * 2) {
if (isCanonical())
use_(this, useArgs_);
use_(0, useArgs_);
return;
}
// ---------- Selecting the individual gluing permutations ----------
// Observe that in a canonical face pairing, one-ended chains always
// follow an increasing sequence of tetrahedra from boundary to end,
// or follow the sequence of tetrahedra 0, 1, ..., k from end to
// boundary.
//
// In particular, this means that for any tetrahedron not internal
// to a one-ended chain (with the possible exception of tetrahedron
// order[nChainEdges].tet), face 0 of this tetrahedron is not
// involved in a one-ended chain.
// In this generation algorithm, each orientation is simply +/-1.
// We won't bother assigning orientations to the tetrahedra internal
// to the one-ended chains.
int minOrder = orderElt;
int maxOrder = orderElt + maxDepth;
NTetFace face, adj;
bool generic;
int mergeResult;
while (orderElt >= minOrder) {
face = order[orderElt];
adj = (*pairing)[face];
// TODO (long-term): Check for cancellation.
// Move to the next permutation.
if (orderType[orderElt] == EDGE_CHAIN_END ||
orderType[orderElt] == EDGE_CHAIN_INTERNAL_FIRST) {
// Choose from one of the two permutations stored in array
// chainPermIndices[].
generic = false;
if (permIndex(face) < 0)
permIndex(face) = chainPermIndices[2 * orderElt];
else if (permIndex(face) == chainPermIndices[2 * orderElt])
permIndex(face) = chainPermIndices[2 * orderElt + 1];
else
permIndex(face) = 6;
} else if (orderType[orderElt] == EDGE_CHAIN_INTERNAL_SECOND) {
// The permutation is predetermined.
generic = false;
if (permIndex(face) < 0) {
if (permIndex(order[orderElt - 1]) ==
chainPermIndices[2 * orderElt - 2])
permIndex(face) = chainPermIndices[2 * orderElt];
else
permIndex(face) = chainPermIndices[2 * orderElt + 1];
} else
permIndex(face) = 6;
} else {
// Generic case.
generic = true;
// Be sure to preserve the orientation of the permutation if
// necessary.
if ((! orientableOnly_) || pairing->dest(face).face == 0)
permIndex(face)++;
else
permIndex(face) += 2;
}
// Are we out of ideas for this face?
if (permIndex(face) >= 6) {
// Head back down to the previous face.
permIndex(face) = -1;
permIndex(adj) = -1;
orderElt--;
// Pull apart vertex and edge links at the previous level.
if (orderElt >= minOrder) {
splitVertexClasses();
splitEdgeClasses();
}
continue;
}
// We are sitting on a new permutation to try.
permIndex(adj) = allPermsS3Inv[permIndex(face)];
// In the following code we use several results from
// "Face pairing graphs and 3-manifold enumeration", B. A. Burton,
// J. Knot Theory Ramifications 13 (2004).
//
// These include:
//
// - We cannot have an edge of degree <= 2, or an edge of degree 3
// meeting three distinct tetrahedra (section 2.1);
// - We must have exactly one vertex (lemma 2.6);
// - We cannot have a face with two edges identified to form a
// cone (lemma 2.8);
// - We cannot have a face with all three edges identified to
// form an L(3,1) spine (lemma 2.5).
// Merge edge links and run corresponding tests.
if (mergeEdgeClasses()) {
// We created a structure that should not appear in a final
// census triangulation (e.g., a low-degree or invalid edge,
// or a face whose edges are identified in certain ways).
splitEdgeClasses();
continue;
}
// The final triangulation should have precisely (nTets + 1) edges
// (since it must have precisely one vertex).
if (nEdgeClasses < nTets + 1) {
// We already have too few edge classes, and the count can
// only get smaller.
// Note that the triangulations we are pruning include ideal
// triangulations (with vertex links of Euler characteristic < 2).
splitEdgeClasses();
continue;
}
// In general, one can prove that (assuming no invalid edges or
// boundary faces) we will end up with (<= nTets + nVertices) edges
// (with strictly fewer edges if some vertex links are non-spherical).
// If we must end up with (> nTets + 1) edges we can therefore
// prune since we won't have a one-vertex triangulation.
if (nEdgeClasses > nTets + 1 + 3 * (nTets * 2 - orderElt - 1)) {
// We have (2n - orderElt - 1) more gluings to choose.
// Since each merge can reduce the number of edge classes
// by at most 3, there is no way we can end up with just
// (nTets + 1) edges at the end.
splitEdgeClasses();
continue;
}
// Merge vertex links and run corresponding tests.
mergeResult = mergeVertexClasses();
if (mergeResult & VLINK_CLOSED) {
// We closed off a vertex link, which means we will end up
// with more than one vertex (unless this was our very last
// gluing).
if (orderElt + 1 < static_cast<int>(nTets) * 2) {
splitVertexClasses();
splitEdgeClasses();
continue;
}
}
if (mergeResult & VLINK_NON_SPHERE) {
// Our vertex link will never be a 2-sphere. Stop now.
splitVertexClasses();
splitEdgeClasses();
continue;
}
if (nVertexClasses > 1 + 3 * (nTets * 2 - orderElt - 1)) {
// We have (2n - orderElt - 1) more gluings to choose.
// Since each merge can reduce the number of vertex classes
// by at most 3, there is no way we can end up with just one
// vertex at the end.
splitVertexClasses();
splitEdgeClasses();
continue;
}
// Fix the orientation if appropriate.
if (generic && adj.face == 0 && orientableOnly_) {
// It's the first time we've hit this tetrahedron.
if ((permIndex(face) + (face.face == 3 ? 0 : 1) +
(adj.face == 3 ? 0 : 1)) % 2 == 0)
orientation[adj.tet] = -orientation[face.tet];
else
orientation[adj.tet] = orientation[face.tet];
}
// Move on to the next face.
orderElt++;
// If we're at the end, try the solution and step back.
if (orderElt == static_cast<int>(nTets) * 2) {
// We in fact have an entire triangulation.
// Run through the automorphisms and check whether our
// permutations are in canonical form.
if (isCanonical())
use_(this, useArgs_);
// Back to the previous face.
orderElt--;
// Pull apart vertex and edge links at the previous level.
if (orderElt >= minOrder) {
splitVertexClasses();
splitEdgeClasses();
}
} else {
// Not a full triangulation; just one level deeper.
// We've moved onto a new face.
// Be sure to get the orientation right.
face = order[orderElt];
if (orientableOnly_ && pairing->dest(face).face > 0) {
// permIndex(face) will be set to -1 or -2 as appropriate.
adj = (*pairing)[face];
if (orientation[face.tet] == orientation[adj.tet])
permIndex(face) = 1;
else
permIndex(face) = 0;
if ((face.face == 3 ? 0 : 1) + (adj.face == 3 ? 0 : 1) == 1)
permIndex(face) = (permIndex(face) + 1) % 2;
permIndex(face) -= 2;
}
if (orderElt == maxOrder) {
// We haven't found an entire triangulation, but we've
// gone as far as we need to.
// Process it, then step back.
use_(this, useArgs_);
// Back to the previous face.
permIndex(face) = -1;
orderElt--;
// Pull apart vertex links at the previous level.
if (orderElt >= minOrder) {
splitVertexClasses();
splitEdgeClasses();
}
}
}
}
// And the search is over.
// Some extra sanity checking.
if (minOrder == 0) {
// Our vertex classes had better be 4n standalone vertices.
if (nVertexClasses != 4 * nTets)
std::cerr << "ERROR: nVertexClasses == "
<< nVertexClasses << " at end of search!" << std::endl;
for (int i = 0; i < static_cast<int>(nTets) * 4; i++) {
if (vertexState[i].parent != -1)
std::cerr << "ERROR: vertexState[" << i << "].parent == "
<< vertexState[i].parent << " at end of search!"
<< std::endl;
if (vertexState[i].rank != 0)
std::cerr << "ERROR: vertexState[" << i << "].rank == "
<< vertexState[i].rank << " at end of search!" << std::endl;
if (vertexState[i].bdry != 3)
std::cerr << "ERROR: vertexState[" << i << "].bdry == "
<< vertexState[i].bdry << " at end of search!" << std::endl;
if (vertexState[i].hadEqualRank)
std::cerr << "ERROR: vertexState[" << i << "].hadEqualRank == "
"true at end of search!" << std::endl;
if (vertexState[i].bdryEdges != 3)
std::cerr << "ERROR: vertexState[" << i << "].bdryEdges == "
<< static_cast<int>(vertexState[i].bdryEdges)
<< " at end of search!" << std::endl;
if (vertexState[i].bdryNext[0] != i)
std::cerr << "ERROR: vertexState[" << i << "].bdryNext[0] == "
<< vertexState[i].bdryNext[0] << " at end of search!"
<< std::endl;
if (vertexState[i].bdryNext[1] != i)
std::cerr << "ERROR: vertexState[" << i << "].bdryNext[1] == "
<< vertexState[i].bdryNext[1] << " at end of search!"
<< std::endl;
if (vertexState[i].bdryTwist[0])
std::cerr << "ERROR: vertexState[" << i << "].bdryTwist == "
<< static_cast<int>(vertexState[i].bdryTwist[0])
<< " at end of search!" << std::endl;
if (vertexState[i].bdryTwist[1])
std::cerr << "ERROR: vertexState[" << i << "].bdryTwist == "
<< static_cast<int>(vertexState[i].bdryTwist[1])
<< " at end of search!" << std::endl;
}
for (unsigned i = 0; i < nTets * 8; i++)
if (vertexStateChanged[i] != -1)
std::cerr << "ERROR: vertexStateChanged[" << i << "] == "
<< vertexStateChanged[i] << " at end of search!"
<< std::endl;
// And our edge classes had better be 6n standalone edges.
if (nEdgeClasses != 6 * nTets)
std::cerr << "ERROR: nEdgeClasses == "
<< nEdgeClasses << " at end of search!" << std::endl;
for (unsigned i = 0; i < nTets * 6; i++) {
if (edgeState[i].parent != -1)
std::cerr << "ERROR: edgeState[" << i << "].parent == "
<< edgeState[i].parent << " at end of search!"
<< std::endl;
if (edgeState[i].rank != 0)
std::cerr << "ERROR: edgeState[" << i << "].rank == "
<< edgeState[i].rank << " at end of search!" << std::endl;
if (edgeState[i].size != 1)
std::cerr << "ERROR: edgeState[" << i << "].size == "
<< edgeState[i].size << " at end of search!" << std::endl;
if (! edgeState[i].bounded)
std::cerr << "ERROR: edgeState[" << i << "].bounded == "
<< edgeState[i].bounded << " at end of search!"
<< std::endl;
if (edgeState[i].hadEqualRank)
std::cerr << "ERROR: edgeState[" << i << "].hadEqualRank == "
"true at end of search!" << std::endl;
}
for (unsigned i = 0; i < nTets * 8; i++)
if (edgeStateChanged[i] != -1)
std::cerr << "ERROR: edgeStateChanged[" << i << "] == "
<< edgeStateChanged[i] << " at end of search!"
<< std::endl;
#if PRUNE_HIGH_DEG_EDGE_SET
if (highDegSum != 0)
std::cerr << "ERROR: highDegSum == " << highDegSum
<< " at end of search!" << std::endl;
#endif
}
use_(0, useArgs_);
}
void NClosedPrimeMinSearcher::dumpData(std::ostream& out) const {
NGluingPermSearcher::dumpData(out);
unsigned nTets = getNumberOfTetrahedra();
unsigned i;
for (i = 0; i < 2 * nTets; i++) {
if (i)
out << ' ';
out << order[i].tet << ' ' << order[i].face << ' ' << orderType[i];
}
out << std::endl;
out << nChainEdges << std::endl;
if (nChainEdges) {
for (i = 0; i < 2 * nChainEdges; i++) {
if (i)
out << ' ';
out << chainPermIndices[i];
}
out << std::endl;
}
out << orderElt << std::endl;
out << nVertexClasses << std::endl;
for (i = 0; i < 4 * nTets; i++) {
vertexState[i].dumpData(out);
out << std::endl;
}
for (i = 0; i < 8 * nTets; i++) {
if (i)
out << ' ';
out << vertexStateChanged[i];
}
out << std::endl;
out << nEdgeClasses << std::endl;
for (i = 0; i < 6 * nTets; i++) {
edgeState[i].dumpData(out);
out << std::endl;
}
for (i = 0; i < 8 * nTets; i++) {
if (i)
out << ' ';
out << edgeStateChanged[i];
}
out << std::endl;
#if PRUNE_HIGH_DEG_EDGE_SET
out << highDegSum << ' ' << highDegBound << std::endl;
#endif
}
NClosedPrimeMinSearcher::NClosedPrimeMinSearcher(std::istream& in,
UseGluingPerms use, void* useArgs) :
NGluingPermSearcher(in, use, useArgs),
order(0), orderType(0), nChainEdges(0), chainPermIndices(0),
nVertexClasses(0), vertexState(0), vertexStateChanged(0),
nEdgeClasses(0), edgeState(0), edgeStateChanged(0),
orderElt(0) {
if (inputError_)
return;
unsigned nTets = getNumberOfTetrahedra();
unsigned i;
order = new NTetFace[2 * nTets];
orderType = new unsigned[nTets * 2];
for (i = 0; i < 2 * nTets; i++) {
in >> order[i].tet >> order[i].face >> orderType[i];
if (order[i].tet >= static_cast<int>(nTets) || order[i].tet < 0 ||
order[i].face >= 4 || order[i].face < 0) {
inputError_ = true; return;
}
}
in >> nChainEdges;
/* Unnecessary since nChainEdges is unsigned.
if (nChainEdges < 0) {
inputError_ = true; return;
} */
if (nChainEdges) {
chainPermIndices = new int[nChainEdges * 2];
for (i = 0; i < 2 * nChainEdges; i++) {
in >> chainPermIndices[i];
if (chainPermIndices[i] < 0 || chainPermIndices[i] >= 6) {
inputError_ = true; return;
}
}
}
in >> orderElt;
in >> nVertexClasses;
if (nVertexClasses > 4 * nTets) {
inputError_ = true; return;
}
vertexState = new TetVertexState[4 * nTets];
for (i = 0; i < 4 * nTets; i++)
if (! vertexState[i].readData(in, 4 * nTets)) {
inputError_ = true; return;
}
vertexStateChanged = new int[8 * nTets];
for (i = 0; i < 8 * nTets; i++) {
in >> vertexStateChanged[i];
if (vertexStateChanged[i] < -1 ||
vertexStateChanged[i] >= 4 * static_cast<int>(nTets)) {
inputError_ = true; return;
}
}
in >> nEdgeClasses;
if (nEdgeClasses > 6 * nTets) {
inputError_ = true; return;
}
edgeState = new TetEdgeState[6 * nTets];
for (i = 0; i < 6 * nTets; i++)
if (! edgeState[i].readData(in, 6 * nTets)) {
inputError_ = true; return;
}
edgeStateChanged = new int[8 * nTets];
for (i = 0; i < 8 * nTets; i++) {
in >> edgeStateChanged[i];
if (edgeStateChanged[i] < -1 ||
edgeStateChanged[i] >= 6 * static_cast<int>(nTets)) {
inputError_ = true; return;
}
}
#if PRUNE_HIGH_DEG_EDGE_SET
in >> highDegSum >> highDegBound;
if (highDegSum < 0 || highDegSum > 6 * static_cast<int>(nTets) ||
highDegBound != 3 * static_cast<int>(nTets) - 3) {
inputError_ = true; return;
}
#endif
// Did we hit an unexpected EOF?
if (in.eof())
inputError_ = true;
}
int NClosedPrimeMinSearcher::mergeVertexClasses() {
// Merge all three vertex pairs for the current face.
NTetFace face = order[orderElt];
NTetFace adj = (*pairing)[face];
int retVal = 0;
int v, w;
int vIdx, wIdx, tmpIdx, nextIdx;
unsigned orderIdx;
int vRep, wRep;
int vNext[2], wNext[2];
char vTwist[2], wTwist[2];
NPerm p = gluingPerm(face);
char parentTwists, hasTwist, tmpTwist;
for (v = 0; v < 4; v++) {
if (v == face.face)
continue;
w = p[v];
vIdx = v + 4 * face.tet;
wIdx = w + 4 * adj.tet;
orderIdx = v + 4 * orderElt;
// Are the natural 012 representations of the two faces joined
// with reversed orientations?
// Here we combine the sign of permutation p with the mappings
// from 012 to the native tetrahedron vertices, i.e., v <-> 3 and
// w <-> 3.
hasTwist = (p.sign() < 0 ? 0 : 1);
if ((v == 3 && w != 3) || (v != 3 && w == 3))
hasTwist ^= 1;
parentTwists = 0;
for (vRep = vIdx; vertexState[vRep].parent >= 0;
vRep = vertexState[vRep].parent)
parentTwists ^= vertexState[vRep].twistUp;
for (wRep = wIdx; vertexState[wRep].parent >= 0;
wRep = vertexState[wRep].parent)
parentTwists ^= vertexState[wRep].twistUp;
if (vRep == wRep) {
vertexState[vRep].bdry -= 2;
if (vertexState[vRep].bdry == 0)
retVal |= VLINK_CLOSED;
// Have we made the vertex link non-orientable?
if (hasTwist ^ parentTwists)
retVal |= VLINK_NON_SPHERE;
vertexStateChanged[orderIdx] = -1;
// Examine the cycles of boundary components.
if (vIdx == wIdx) {
// Ignore this case; it implies either a one-face cone
// or a low degree edge, both of which should have
// already been picked up in the edge link tests.
std::cerr << "ERROR: vIdx == wIdx" << std::endl;
} else {
// We are joining two distinct tetrahedron vertices that
// already contribute to the same vertex link.
if (vertexState[vIdx].bdryEdges == 2)
vtxBdryBackup(vIdx);
if (vertexState[wIdx].bdryEdges == 2)
vtxBdryBackup(wIdx);
if (vtxBdryLength1(vIdx) && vtxBdryLength1(wIdx)) {
// We are joining together two boundaries of length one.
// Do nothing and mark the non-trivial genus.
// std::cerr << "NON-SPHERE: 1 >-< 1" << std::endl;
retVal |= VLINK_NON_SPHERE;
} else if (vtxBdryLength2(vIdx, wIdx)) {
// We are closing off a single boundary of length two.
// All good.
} else {
vtxBdryNext(vIdx, face.tet, v, face.face, vNext, vTwist);
vtxBdryNext(wIdx, adj.tet, w, adj.face, wNext, wTwist);
if (vNext[0] == wIdx && wNext[1 ^ vTwist[0]] == vIdx) {
// We are joining two adjacent edges of the vertex link.
// Simply eliminate them.
vtxBdryJoin(vNext[1], 0 ^ vTwist[1],
wNext[0 ^ vTwist[0]],
(vTwist[0] ^ wTwist[0 ^ vTwist[0]]) ^ vTwist[1]);
} else if (vNext[1] == wIdx &&
wNext[0 ^ vTwist[1]] == vIdx) {
// Again, joining two adjacent edges of the vertex link.
vtxBdryJoin(vNext[0], 1 ^ vTwist[0],
wNext[1 ^ vTwist[1]],
(vTwist[1] ^ wTwist[1 ^ vTwist[1]]) ^ vTwist[0]);
} else {
// See if we are joining two different boundary cycles
// together; if so, we have created non-trivial genus in
// the vertex link.
tmpIdx = vertexState[vIdx].bdryNext[0];
tmpTwist = vertexState[vIdx].bdryTwist[0];
while (tmpIdx != vIdx && tmpIdx != wIdx) {
nextIdx = vertexState[tmpIdx].
bdryNext[0 ^ tmpTwist];
tmpTwist ^= vertexState[tmpIdx].
bdryTwist[0 ^ tmpTwist];
tmpIdx = nextIdx;
}
if (tmpIdx == vIdx) {
// Different boundary cycles.
// Don't touch anything; just flag a
// high genus error.
// std::cerr << "NON-SPHERE: (X)" << std::endl;
retVal |= VLINK_NON_SPHERE;
} else {
// Same boundary cycle.
vtxBdryJoin(vNext[0], 1 ^ vTwist[0],
wNext[1 ^ hasTwist],
vTwist[0] ^ (hasTwist ^ wTwist[1 ^ hasTwist]));
vtxBdryJoin(vNext[1], 0 ^ vTwist[1],
wNext[0 ^ hasTwist],
vTwist[1] ^ (hasTwist ^ wTwist[0 ^ hasTwist]));
}
}
}
vertexState[vIdx].bdryEdges--;
vertexState[wIdx].bdryEdges--;
}
} else {
// We are joining two distinct vertices together and merging
// their vertex links.
if (vertexState[vRep].rank < vertexState[wRep].rank) {
// Join vRep beneath wRep.
vertexState[vRep].parent = wRep;
vertexState[vRep].twistUp = hasTwist ^ parentTwists;
vertexState[wRep].bdry = vertexState[wRep].bdry +
vertexState[vRep].bdry - 2;
if (vertexState[wRep].bdry == 0)
retVal |= VLINK_CLOSED;
vertexStateChanged[orderIdx] = vRep;
} else {
// Join wRep beneath vRep.
vertexState[wRep].parent = vRep;
vertexState[wRep].twistUp = hasTwist ^ parentTwists;
if (vertexState[vRep].rank == vertexState[wRep].rank) {
vertexState[vRep].rank++;
vertexState[wRep].hadEqualRank = true;
}
vertexState[vRep].bdry = vertexState[vRep].bdry +
vertexState[wRep].bdry - 2;
if (vertexState[vRep].bdry == 0)
retVal |= VLINK_CLOSED;
vertexStateChanged[orderIdx] = wRep;
}
nVertexClasses--;
// Adjust the cycles of boundary components.
if (vertexState[vIdx].bdryEdges == 2)
vtxBdryBackup(vIdx);
if (vertexState[wIdx].bdryEdges == 2)
vtxBdryBackup(wIdx);
if (vtxBdryLength1(vIdx)) {
if (vtxBdryLength1(wIdx)) {
// Both vIdx and wIdx form entire boundary components of
// length one; these are joined together and the vertex
// link is closed off.
// No changes to make for the boundary cycles.
} else {
// Here vIdx forms a boundary component of length one,
// and wIdx does not. Ignore vIdx, and simply excise the
// relevant edge from wIdx.
// There is nothing to do here unless wIdx only has one
// boundary edge remaining (in which case we know it
// joins to some different tetrahedron vertex).
if (vertexState[wIdx].bdryEdges == 1) {
wNext[0] = vertexState[wIdx].bdryNext[0];
wNext[1] = vertexState[wIdx].bdryNext[1];
wTwist[0] = vertexState[wIdx].bdryTwist[0];
wTwist[1] = vertexState[wIdx].bdryTwist[1];
vtxBdryJoin(wNext[0], 1 ^ wTwist[0], wNext[1],
wTwist[0] ^ wTwist[1]);
}
}
} else if (vtxBdryLength1(wIdx)) {
// As above, but with the two vertices the other way around.
if (vertexState[vIdx].bdryEdges == 1) {
vNext[0] = vertexState[vIdx].bdryNext[0];
vNext[1] = vertexState[vIdx].bdryNext[1];
vTwist[0] = vertexState[vIdx].bdryTwist[0];
vTwist[1] = vertexState[vIdx].bdryTwist[1];
vtxBdryJoin(vNext[0], 1 ^ vTwist[0], vNext[1],
vTwist[0] ^ vTwist[1]);
}
} else {
// Each vertex belongs to a boundary component of length
// at least two. Merge the components together.
vtxBdryNext(vIdx, face.tet, v, face.face, vNext, vTwist);
vtxBdryNext(wIdx, adj.tet, w, adj.face, wNext, wTwist);
vtxBdryJoin(vNext[0], 1 ^ vTwist[0], wNext[1 ^ hasTwist],
vTwist[0] ^ (hasTwist ^ wTwist[1 ^ hasTwist]));
vtxBdryJoin(vNext[1], 0 ^ vTwist[1], wNext[0 ^ hasTwist],
vTwist[1] ^ (hasTwist ^ wTwist[0 ^ hasTwist]));
}
vertexState[vIdx].bdryEdges--;
vertexState[wIdx].bdryEdges--;
}
}
return retVal;
}
void NClosedPrimeMinSearcher::splitVertexClasses() {
// Split all three vertex pairs for the current face.
NTetFace face = order[orderElt];
NTetFace adj = (*pairing)[face];
int v, w;
int vIdx, wIdx;
unsigned orderIdx;
int rep, subRep;
NPerm p = gluingPerm(face);
// Do everything in reverse. This includes the loop over vertices.
for (v = 3; v >= 0; v--) {
if (v == face.face)
continue;
w = p[v];
vIdx = v + 4 * face.tet;
wIdx = w + 4 * adj.tet;
orderIdx = v + 4 * orderElt;
if (vertexStateChanged[orderIdx] < 0) {
for (rep = vIdx; vertexState[rep].parent >= 0;
rep = vertexState[rep].parent)
;
vertexState[rep].bdry += 2;
} else {
subRep = vertexStateChanged[orderIdx];
rep = vertexState[subRep].parent;
vertexState[subRep].parent = -1;
if (vertexState[subRep].hadEqualRank) {
vertexState[subRep].hadEqualRank = false;
vertexState[rep].rank--;
}
vertexState[rep].bdry = vertexState[rep].bdry + 2 -
vertexState[subRep].bdry;
vertexStateChanged[orderIdx] = -1;
nVertexClasses++;
}
// Restore cycles of boundary components.
if (vIdx == wIdx) {
// We did nothing during the merge; do nothing during the split.
} else {
vertexState[wIdx].bdryEdges++;
vertexState[vIdx].bdryEdges++;
switch (vertexState[wIdx].bdryEdges) {
case 3: vertexState[wIdx].bdryNext[0] =
vertexState[wIdx].bdryNext[1] = wIdx;
vertexState[wIdx].bdryTwist[0] =
vertexState[wIdx].bdryTwist[1] = 0;
break;
case 2: vtxBdryRestore(wIdx);
// Fall through to the next case, so we can
// adjust the neighbours.
case 1: // Nothing was changed for wIdx during the merge,
// so there is nothing there to restore.
// Adjust neighbours to point back to wIdx.
vtxBdryFixAdj(wIdx);
}
switch (vertexState[vIdx].bdryEdges) {
case 3: vertexState[vIdx].bdryNext[0] =
vertexState[vIdx].bdryNext[1] = vIdx;
vertexState[vIdx].bdryTwist[0] =
vertexState[vIdx].bdryTwist[1] = 0;
break;
case 2: vtxBdryRestore(vIdx);
// Fall through to the next case, so we can
// adjust the neighbours.
case 1: // Nothing was changed for vIdx during the merge,
// so there is nothing there to restore.
// Adjust neighbours to point back to vIdx.
vtxBdryFixAdj(vIdx);
}
}
}
}
int NClosedPrimeMinSearcher::mergeEdgeClasses() {
NTetFace face = order[orderElt];
NTetFace adj = (*pairing)[face];
int retVal = 0;
NPerm p = gluingPerm(face);
int v1, w1, v2, w2;
int e, f;
int orderIdx;
int eRep, fRep;
int middleTet;
v1 = face.face;
w1 = p[v1];
char parentTwists, hasTwist;
for (v2 = 0; v2 < 4; v2++) {
if (v2 == v1)
continue;
w2 = p[v2];
// Look at the edge opposite v1-v2.
e = 5 - edgeNumber[v1][v2];
f = 5 - edgeNumber[w1][w2];
orderIdx = v2 + 4 * orderElt;
// We declare the natural orientation of an edge to be smaller
// vertex to larger vertex.
hasTwist = (p[edgeStart[e]] > p[edgeEnd[e]] ? 1 : 0);
parentTwists = 0;
eRep = findEdgeClass(e + 6 * face.tet, parentTwists);
fRep = findEdgeClass(f + 6 * adj.tet, parentTwists);
if (eRep == fRep) {
edgeState[eRep].bounded = false;
if (edgeState[eRep].size <= 2)
retVal |= ECLASS_LOWDEG;
else if (edgeState[eRep].size == 3) {
// Flag as LOWDEG only if three distinct tetrahedra are used.
middleTet = pairing->dest(face.tet, v2).tet;
if (face.tet != adj.tet && adj.tet != middleTet &&
middleTet != face.tet)
retVal |= ECLASS_LOWDEG;
}
if (hasTwist ^ parentTwists)
retVal |= ECLASS_TWISTED;
edgeStateChanged[orderIdx] = -1;
} else {
#if PRUNE_HIGH_DEG_EDGE_SET
if (edgeState[eRep].size >= 3) {
if (edgeState[fRep].size >= 3)
highDegSum += 3;
else
highDegSum += edgeState[fRep].size;
} else if (edgeState[fRep].size >= 3)
highDegSum += edgeState[eRep].size;
else if (edgeState[eRep].size == 2 && edgeState[fRep].size == 2)
++highDegSum;
#endif
if (edgeState[eRep].rank < edgeState[fRep].rank) {
// Join eRep beneath fRep.
edgeState[eRep].parent = fRep;
edgeState[eRep].twistUp = hasTwist ^ parentTwists;
edgeState[fRep].size += edgeState[eRep].size;
#if PRUNE_HIGH_DEG_EDGE_SET
#else
if (edgeState[fRep].size > 3 * getNumberOfTetrahedra())
retVal |= ECLASS_HIGHDEG;
#endif
edgeStateChanged[orderIdx] = eRep;
} else {
// Join fRep beneath eRep.
edgeState[fRep].parent = eRep;
edgeState[fRep].twistUp = hasTwist ^ parentTwists;
if (edgeState[eRep].rank == edgeState[fRep].rank) {
edgeState[eRep].rank++;
edgeState[fRep].hadEqualRank = true;
}
edgeState[eRep].size += edgeState[fRep].size;
#if PRUNE_HIGH_DEG_EDGE_SET
#else
if (edgeState[eRep].size > 3 * getNumberOfTetrahedra())
retVal |= ECLASS_HIGHDEG;
#endif
edgeStateChanged[orderIdx] = fRep;
}
#if PRUNE_HIGH_DEG_EDGE_SET
if (highDegSum > highDegBound)
retVal |= ECLASS_HIGHDEG;
#endif
nEdgeClasses--;
}
}
// If we've already found something bad, exit now. No sense in
// looking for even more bad structures, since we're only going to
// discard the triangulation anyway.
if (retVal)
return retVal;
// Find representatives of the equivalence classes for all six edges
// of the current tetrahedron (instead of calculating them each time
// we want them).
int tRep[6];
char tTwist[6];
for (e = 0; e < 6; e++)
tRep[e] = findEdgeClass(e + 6 * face.tet, tTwist[e] = 0);
// Test for cones in all possible positions on all possible faces.
// Apologies for the tightness of the code; this part is being
// micro-optimised since it is run so very frequently. The old,
// more readable version of this code is in the commented block below.
for (e = 0; e < 12; e++)
if (tRep[coneEdge[e][0]] == tRep[coneEdge[e][1]] && (coneNoTwist[e] ^
(tTwist[coneEdge[e][0]] ^ tTwist[coneEdge[e][1]])))
return ECLASS_CONE;
/*
// Test for cones on edges v1->w1->v2.
for (w1 = 0; w1 < 4; w1++)
for (v1 = 0; v1 < 3; v1++) {
if (v1 == w1)
continue;
for (v2 = v1 + 1; v2 < 4; v2++) {
if (v2 == w1)
continue;
parentTwists = tTwist[edgeNumber[v1][w1]] ^
tTwist[edgeNumber[v2][w1]];
if (tRep[edgeNumber[v1][w1]] == tRep[edgeNumber[v2][w1]]) {
hasTwist = (v1 < w1 && w1 < v2 ? 0 : 1);
if (hasTwist ^ parentTwists) {
return ECLASS_CONE;
}
}
}
}
*/
// Test for L(3,1) spines.
// Don't bother checking the directions of the edges -- if it's not an
// L(3,1) spine then it includes a cone, which we've already tested for.
// L(3,1) on face 012:
if (tRep[0] == tRep[1] && tRep[1] == tRep[3])
return ECLASS_L31;
// L(3,1) on face 013:
if (tRep[0] == tRep[2] && tRep[2] == tRep[4])
return ECLASS_L31;
// L(3,1) on face 023:
if (tRep[1] == tRep[2] && tRep[2] == tRep[5])
return ECLASS_L31;
// L(3,1) on face 123:
if (tRep[3] == tRep[4] && tRep[4] == tRep[5])
return ECLASS_L31;
// Nothing bad was found.
return 0;
}
void NClosedPrimeMinSearcher::splitEdgeClasses() {
NTetFace face = order[orderElt];
int v1, v2;
int e;
int eIdx, orderIdx;
int rep, subRep;
v1 = face.face;
for (v2 = 3; v2 >= 0; v2--) {
if (v2 == v1)
continue;
// Look at the edge opposite v1-v2.
e = 5 - edgeNumber[v1][v2];
eIdx = e + 6 * face.tet;
orderIdx = v2 + 4 * orderElt;
if (edgeStateChanged[orderIdx] < 0)
edgeState[findEdgeClass(eIdx)].bounded = true;
else {
subRep = edgeStateChanged[orderIdx];
rep = edgeState[subRep].parent;
edgeState[subRep].parent = -1;
if (edgeState[subRep].hadEqualRank) {
edgeState[subRep].hadEqualRank = false;
edgeState[rep].rank--;
}
edgeState[rep].size -= edgeState[subRep].size;
#if PRUNE_HIGH_DEG_EDGE_SET
if (edgeState[rep].size >= 3) {
if (edgeState[subRep].size >= 3)
highDegSum -= 3;
else
highDegSum -= edgeState[subRep].size;
} else if (edgeState[subRep].size >= 3)
highDegSum -= edgeState[rep].size;
else if (edgeState[rep].size == 2 && edgeState[subRep].size == 2)
--highDegSum;
#endif
edgeStateChanged[orderIdx] = -1;
nEdgeClasses++;
}
}
}
void NClosedPrimeMinSearcher::vtxBdryConsistencyCheck() {
int adj, id, end;
for (id = 0; id < static_cast<int>(getNumberOfTetrahedra()) * 4; id++)
if (vertexState[id].bdryEdges > 0)
for (end = 0; end < 2; end++) {
adj = vertexState[id].bdryNext[end];
if (vertexState[adj].bdryEdges == 0)
std::cerr << "CONSISTENCY ERROR: Vertex link boundary "
<< id << '/' << end
<< " runs into an internal vertex." << std::endl;
if (vertexState[adj].bdryNext[(1 ^ end) ^
vertexState[id].bdryTwist[end]] != id)
std::cerr << "CONSISTENCY ERROR: Vertex link boundary "
<< id << '/' << end
<< " has a mismatched adjacency." << std::endl;
if (vertexState[adj].bdryTwist[(1 ^ end) ^
vertexState[id].bdryTwist[end]] !=
vertexState[id].bdryTwist[end])
std::cerr << "CONSISTENCY ERROR: Vertex link boundary "
<< id << '/' << end
<< " has a mismatched twist." << std::endl;
}
}
void NClosedPrimeMinSearcher::vtxBdryDump(std::ostream& out) {
for (unsigned id = 0; id < getNumberOfTetrahedra() * 4; id++) {
if (id > 0)
out << ' ';
out << vertexState[id].bdryNext[0]
<< (vertexState[id].bdryTwist[0] ? '~' : '-')
<< id
<< (vertexState[id].bdryTwist[1] ? '~' : '-')
<< vertexState[id].bdryNext[1];
}
out << std::endl;
}
} // namespace regina
|