1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <algorithm>
#include <sstream>
#include "census/ncensus.h"
#include "census/ngluingpermsearcher.h"
#include "triangulation/ntriangulation.h"
#include "utilities/memutils.h"
namespace regina {
const char NGluingPermSearcher::dataTag_ = 'g';
NGluingPermSearcher::NGluingPermSearcher(
const NFacePairing* pairing, const NFacePairingIsoList* autos,
bool orientableOnly, bool finiteOnly, int whichPurge,
UseGluingPerms use, void* useArgs) :
NGluingPerms(pairing), autos_(autos), autosNew(autos == 0),
orientableOnly_(orientableOnly), finiteOnly_(finiteOnly),
whichPurge_(whichPurge), use_(use), useArgs_(useArgs),
started(false),
orientation(new int[pairing->getNumberOfTetrahedra()]),
currFace(0, 0) {
// Generate the list of face pairing automorphisms if necessary.
// This will require us to remove the const for a wee moment.
if (autosNew) {
const_cast<NGluingPermSearcher*>(this)->autos_ =
new NFacePairingIsoList();
pairing->findAutomorphisms(const_cast<NFacePairingIsoList&>(*autos_));
}
// Initialise arrays.
unsigned nTetrahedra = getNumberOfTetrahedra();
std::fill(orientation, orientation + nTetrahedra, 0);
std::fill(permIndices, permIndices + nTetrahedra * 4, -1);
}
NGluingPermSearcher::~NGluingPermSearcher() {
delete[] orientation;
if (autosNew) {
// We made them, so we'd better remove the const again and
// delete them.
NFacePairingIsoList* autos = const_cast<NFacePairingIsoList*>(autos_);
std::for_each(autos->begin(), autos->end(),
FuncDelete<NIsomorphismDirect>());
delete autos;
}
}
NGluingPermSearcher* NGluingPermSearcher::bestSearcher(
const NFacePairing* pairing, const NFacePairingIsoList* autos,
bool orientableOnly, bool finiteOnly, int whichPurge,
UseGluingPerms use, void* useArgs) {
// Use an optimised algorithm if possible.
if (pairing->getNumberOfTetrahedra() >= 3) {
if (finiteOnly && pairing->isClosed() &&
(whichPurge & NCensus::PURGE_NON_MINIMAL) &&
(whichPurge & NCensus::PURGE_NON_PRIME) &&
(orientableOnly ||
(whichPurge & NCensus::PURGE_P2_REDUCIBLE))) {
// Closed prime minimal P2-irreducible triangulations with >= 3
// tetrahedra.
return new NClosedPrimeMinSearcher(pairing, autos, orientableOnly,
use, useArgs);
}
}
return new NGluingPermSearcher(pairing, autos, orientableOnly, finiteOnly,
whichPurge, use, useArgs);
}
void NGluingPermSearcher::findAllPerms(const NFacePairing* pairing,
const NFacePairingIsoList* autos, bool orientableOnly,
bool finiteOnly, int whichPurge, UseGluingPerms use, void* useArgs) {
NGluingPermSearcher* searcher = bestSearcher(pairing, autos,
orientableOnly, finiteOnly, whichPurge, use, useArgs);
searcher->runSearch();
delete searcher;
}
void NGluingPermSearcher::runSearch(long maxDepth) {
// In this generation algorithm, each orientation is simply +/-1.
unsigned nTetrahedra = getNumberOfTetrahedra();
if (maxDepth < 0) {
// Larger than we will ever see (and in fact grossly so).
maxDepth = nTetrahedra * 4 + 1;
}
if (! started) {
// Search initialisation.
started = true;
// Do we in fact have no permutation at all to choose?
if (maxDepth == 0 || pairing->dest(0, 0).isBoundary(nTetrahedra)) {
use_(this, useArgs_);
use_(0, useArgs_);
return;
}
currFace.setFirst();
orientation[0] = 1;
}
// Is it a partial search that has already finished?
if (currFace.tet == static_cast<int>(nTetrahedra)) {
if (isCanonical())
use_(this, useArgs_);
use_(0, useArgs_);
return;
}
long depth = 0;
while (depth >= 0) {
// TODO: Check for cancellation.
// When moving to the next permutation, be sure to preserve the
// orientation of the permutation if necessary.
if ((! orientableOnly_) || pairing->dest(currFace).face == 0)
permIndex(currFace)++;
else
permIndex(currFace) += 2;
if (permIndex(currFace) >= 6) {
// Out of ideas for this face.
// Head back down to the previous face.
permIndex(currFace) = -1;
currFace--;
while ((! currFace.isBeforeStart()) &&
(pairing->isUnmatched(currFace) ||
pairing->dest(currFace) < currFace)) {
permIndex(currFace) = -1;
currFace--;
}
depth--;
continue;
}
// We are sitting on a new permutation to try.
// Is this going to lead to an unwanted triangulation?
if (mayPurge(currFace))
continue;
if (! orientableOnly_)
if (badEdgeLink(currFace))
continue;
// Fix the orientation if appropriate.
if (pairing->dest(currFace).face == 0) {
// It's the first time we've hit this tetrahedron.
if ((permIndex(currFace) + (currFace.face == 3 ? 0 : 1) +
(pairing->dest(currFace).face == 3 ? 0 : 1)) % 2 == 0)
orientation[pairing->dest(currFace).tet] =
-orientation[currFace.tet];
else
orientation[pairing->dest(currFace).tet] =
orientation[currFace.tet];
}
// Move on to the next face.
for (currFace++; currFace.tet < static_cast<int>(nTetrahedra);
currFace++) {
if (pairing->isUnmatched(currFace))
continue;
if (currFace < pairing->dest(currFace))
break;
// We've already decided on this gluing permutation; don't
// forget to store the corresponding inverse permutation.
permIndex(currFace) =
allPermsS3Inv[permIndex(pairing->dest(currFace))];
}
depth++;
// If we're at the end, try the solution and step back.
if (currFace.tet == static_cast<int>(nTetrahedra)) {
// We in fact have an entire triangulation.
// Run through the automorphisms and check whether our
// permutations are in canonical form.
if (isCanonical())
use_(this, useArgs_);
// Back to the previous face.
currFace--;
while ((! currFace.isBeforeStart()) &&
(pairing->isUnmatched(currFace) ||
pairing->dest(currFace) < currFace)) {
permIndex(currFace) = -1;
currFace--;
}
depth--;
} else {
// Not a full triangulation; just one level deeper.
if (orientableOnly_ && pairing->dest(currFace).face > 0) {
// Be sure to get the orientation right.
if (orientation[currFace.tet] ==
orientation[pairing->dest(currFace).tet])
permIndex(currFace) = 1;
else
permIndex(currFace) = 0;
if ((currFace.face == 3 ? 0 : 1) +
(pairing->dest(currFace).face == 3 ? 0 : 1) == 1)
permIndex(currFace) = (permIndex(currFace) + 1) % 2;
permIndex(currFace) -= 2;
}
if (depth == maxDepth) {
// We haven't found an entire triangulation, but we've
// gone as far as we need to.
// Process it, then step back.
use_(this, useArgs_);
// Back to the previous face.
permIndex(currFace) = -1;
currFace--;
while ((! currFace.isBeforeStart()) &&
(pairing->isUnmatched(currFace) ||
pairing->dest(currFace) < currFace)) {
permIndex(currFace) = -1;
currFace--;
}
depth--;
}
}
}
// And the search is over.
use_(0, useArgs_);
}
void NGluingPermSearcher::dumpTaggedData(std::ostream& out) const {
out << dataTag() << std::endl;
dumpData(out);
}
NGluingPermSearcher* NGluingPermSearcher::readTaggedData(std::istream& in,
UseGluingPerms use, void* useArgs) {
// Read the class marker.
char c;
in >> c;
if (in.eof())
return 0;
NGluingPermSearcher* ans;
if (c == NGluingPermSearcher::dataTag_)
ans = new NGluingPermSearcher(in, use, useArgs);
else if (c == NClosedPrimeMinSearcher::dataTag_)
ans = new NClosedPrimeMinSearcher(in, use, useArgs);
else
return 0;
if (ans->inputError()) {
delete ans;
return 0;
}
return ans;
}
void NGluingPermSearcher::dumpData(std::ostream& out) const {
// Assuming nTets < 100, estimated worst case (35 * nTets + 12) bytes total.
// Don't quote me on this.
NGluingPerms::dumpData(out);
out << (orientableOnly_ ? 'o' : '.');
out << (finiteOnly_ ? 'f' : '.');
out << (started ? 's' : '.');
out << ' ' << whichPurge_ << std::endl;
for (unsigned t = 0; t < pairing->getNumberOfTetrahedra(); t++) {
if (t)
out << ' ';
out << orientation[t];
}
out << std::endl;
out << currFace.tet << ' ' << currFace.face << std::endl;
}
NGluingPermSearcher::NGluingPermSearcher(std::istream& in,
UseGluingPerms use, void* useArgs) :
NGluingPerms(in), autos_(0), autosNew(false),
use_(use), useArgs_(useArgs), orientation(0), currFace(0, 0) {
if (inputError_)
return;
// Recontruct the face pairing automorphisms.
const_cast<NGluingPermSearcher*>(this)->autos_ = new NFacePairingIsoList();
pairing->findAutomorphisms(const_cast<NFacePairingIsoList&>(*autos_));
autosNew = true;
// Keep reading.
char c;
in >> c;
if (c == 'o')
orientableOnly_ = true;
else if (c == '.')
orientableOnly_ = false;
else {
inputError_ = true; return;
}
in >> c;
if (c == 'f')
finiteOnly_ = true;
else if (c == '.')
finiteOnly_ = false;
else {
inputError_ = true; return;
}
in >> c;
if (c == 's')
started = true;
else if (c == '.')
started = false;
else {
inputError_ = true; return;
}
in >> whichPurge_;
unsigned nTets = pairing->getNumberOfTetrahedra();
orientation = new int[nTets];
for (unsigned t = 0; t < nTets; t++)
in >> orientation[t];
in >> currFace.tet >> currFace.face;
// Did we hit an unexpected EOF?
if (in.eof())
inputError_ = true;
}
bool NGluingPermSearcher::isCanonical() const {
NTetFace face, faceDest, faceImage;
int order;
for (std::list<NIsomorphismDirect*>::const_iterator it = autos_->begin();
it != autos_->end(); it++) {
// Compare the current set of gluing permutations with its
// preimage under each face pairing automorphism, to see whether
// our current permutation set is closest to canonical form.
for (face.setFirst(); face.tet <
static_cast<int>(pairing->getNumberOfTetrahedra()); face++) {
faceDest = pairing->dest(face);
if (pairing->isUnmatched(face) || faceDest < face)
continue;
faceImage = (**it)[face];
order = gluingPerm(face).compareWith(
(*it)->facePerm(faceDest.tet).inverse() * gluingPerm(faceImage)
* (*it)->facePerm(face.tet));
if (order < 0) {
// This permutation set is closer.
break;
} else if (order > 0) {
// The transformed permutation set is closer.
return false;
}
// So far it's an automorphism of gluing permutations also.
// Keep running through faces.
}
// Nothing broke with this automorphism. On to the next one.
}
// Nothing broke at all.
return true;
}
bool NGluingPermSearcher::badEdgeLink(const NTetFace& face) const {
// Run around all three edges bounding the face.
NTetFace adj;
unsigned tet;
NPerm current;
NPerm start(face.face, 3);
bool started, incomplete;
for (unsigned permIdx = 0; permIdx < 3; permIdx++) {
start = start * NPerm(1, 2, 0, 3);
// start maps (0,1,2) to the three vertices of face, with
// (0,1) mapped to the edge that we wish to examine.
// Continue to push through a tetrahedron and then across a
// face, until either we hit a boundary or we return to the
// original face.
current = start;
tet = face.tet;
started = false;
incomplete = false;
while ((! started) || (static_cast<int>(tet) != face.tet) ||
(start[2] != current[2]) || (start[3] != current[3])) {
// Test for a return to the original tetrahedron with the
// orientation reversed; this either means a bad edge link
// or a bad vertex link.
if (started && finiteOnly_ && static_cast<int>(tet) == face.tet)
if (start[3] == current[3] && start.sign() != current.sign())
return true;
// Push through the current tetrahedron.
started = true;
current = current * NPerm(2, 3);
// Push across a face.
if (pairing->isUnmatched(tet, current[3])) {
incomplete = true;
break;
}
adj = pairing->dest(tet, current[3]);
if (permIndex(tet, current[3]) >= 0) {
current = gluingPerm(tet, current[3]) * current;
} else if (permIndex(adj) >= 0) {
current = gluingPerm(adj).inverse() * current;
} else {
incomplete = true;
break;
}
tet = adj.tet;
}
// Did we meet the original edge in reverse?
if ((! incomplete) && (start != current))
return true;
}
// No bad edge links were found.
return false;
}
bool NGluingPermSearcher::lowDegreeEdge(const NTetFace& face,
bool testDegree12, bool testDegree3) const {
// Run around all three edges bounding the face.
NTetFace adj;
unsigned tet;
NPerm current;
NPerm start(face.face, 3);
bool started, incomplete;
unsigned size;
for (unsigned permIdx = 0; permIdx < 3; permIdx++) {
start = start * NPerm(1, 2, 0, 3);
// start maps (0,1,2) to the three vertices of face, with
// (0,1) mapped to the edge that we wish to examine.
// Continue to push through a tetrahedron and then across a
// face, until either we hit a boundary or we return to the
// original face.
current = start;
tet = face.tet;
started = false;
incomplete = false;
size = 0;
while ((! started) || (static_cast<int>(tet) != face.tet) ||
(start[2] != current[2]) || (start[3] != current[3])) {
started = true;
// We're about to push through the current tetrahedron; see
// if we've already exceeded the size of edge links that we
// care about.
if (size >= 3) {
incomplete = true;
break;
}
// Push through the current tetrahedron.
current = current * NPerm(2, 3);
// Push across a face.
if (pairing->isUnmatched(tet, current[3])) {
incomplete = true;
break;
}
adj = pairing->dest(tet, current[3]);
if (permIndex(tet, current[3]) >= 0) {
current = gluingPerm(tet, current[3]) * current;
} else if (permIndex(adj) >= 0) {
current = gluingPerm(adj).inverse() * current;
} else {
incomplete = true;
break;
}
tet = adj.tet;
size++;
}
if (! incomplete) {
if (testDegree12 && size < 3)
return true;
if (testDegree3 && size == 3) {
// Only throw away a degree three edge if it involves
// three distinct tetrahedra.
int tet1 = pairing->dest(face.tet, start[2]).tet;
int tet2 = pairing->dest(face.tet, start[3]).tet;
if (face.tet != tet1 && tet1 != tet2 && tet2 != face.tet)
return true;
}
}
}
// No bad low-degree edges were found.
return false;
}
bool NGluingPermSearcher::mayPurge(const NTetFace& face) const {
// Are we allowed to purge on edges of degree 3?
bool mayPurgeDeg3 = (whichPurge_ & NCensus::PURGE_NON_MINIMAL);
// Are we allowed to purge on edges of degree 1 or 2?
//
// A 2-0 edge move or a 2-1 edge move can result in one or more of
// the following topological changes.
//
// Bigon squashing:
// - Disc reduction;
// - Sphere decomposition or reduction;
// - Crushing embedded RP2 to an invalid edge.
//
// Pillow squashing:
// - Loss of 3-ball;
// - Loss of 3-sphere;
// - Loss of L(3,1).
//
bool mayPurgeDeg12 = (whichPurge_ & NCensus::PURGE_NON_MINIMAL) &&
(whichPurge_ & NCensus::PURGE_NON_PRIME) &&
((whichPurge_ & NCensus::PURGE_P2_REDUCIBLE) || orientableOnly_) &&
finiteOnly_ && (getNumberOfTetrahedra() > 2);
if (mayPurgeDeg12 || mayPurgeDeg3)
return lowDegreeEdge(face, mayPurgeDeg12, mayPurgeDeg3);
else
return false;
}
} // namespace regina
|