File: ngraphloop.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (243 lines) | stat: -rw-r--r-- 8,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "algebra/nabeliangroup.h"
#include "manifold/ngraphloop.h"
#include "manifold/nsfs.h"
#include "maths/nmatrixint.h"
#include <cstdlib> // For labs().

namespace regina {

NGraphLoop::~NGraphLoop() {
    delete sfs_;
}

bool NGraphLoop::operator < (const NGraphLoop& compare) const {
    if (*sfs_ < *compare.sfs_)
        return true;
    if (*compare.sfs_ < *sfs_)
        return false;

    return simpler(matchingReln_, compare.matchingReln_);
}

NAbelianGroup* NGraphLoop::getHomologyH1() const {
    // Just for safety (this should always be true anyway):
    if (sfs_->punctures(false) != 2 || sfs_->punctures(true) != 0)
        return 0;

    // Construct a matrix.
    // Generators: fibre, base curves, two base boundaries, exceptional
    //             fibre boundaries, obstruction boundary,
    //             reflector boundaries, reflector half-fibres, plus one
    //             for the loop created by the joining of boundaries.
    // Relations: base curve relation, exception fibre relations,
    //            obstruction relation, reflector relations,
    //            fibre constraint, joining boundaries.
    unsigned long genus = sfs_->baseGenus();
    unsigned long fibres = sfs_->fibreCount();
    unsigned long ref = sfs_->reflectors();

    // If we have an orientable base space, we get two curves per genus.
    // The easiest thing to do is just to double the genus now.
    if (sfs_->baseOrientable())
        genus *= 2;

    NMatrixInt m(fibres + ref + 5, genus + fibres + 2 * ref + 5);

    unsigned long i, f;
    // The relation for the base orbifold:
    for (i = 1 + genus; i < 1 + genus + 2 + fibres + 1 + ref; i++)
        m.entry(0, i) = 1;
    if (! sfs_->baseOrientable())
        for (i = 1; i < 1 + genus; i++)
            m.entry(0, i) = 2;

    // A relation for each exceptional fibre:
    NSFSFibre fibre;
    for (f = 0; f < fibres; f++) {
        fibre = sfs_->fibre(f);
        m.entry(f + 1, 1 + genus + 2 + f) = fibre.alpha;
        m.entry(f + 1, 0) = fibre.beta;
    }

    // A relation for the obstruction constant:
    m.entry(1 + fibres, 1 + genus + 2 + fibres) = 1;
    m.entry(1 + fibres, 0) = sfs_->obstruction();

    // A relation for each reflector boundary:
    for (i = 0; i < ref; i++) {
        m.entry(2 + fibres + i, 0) = -1;
        m.entry(2 + fibres + i, 1 + genus + 2 + fibres + 1 + ref + i) = 2;
    }

    // A relation constraining the fibre.  This relationship only
    // appears in some cases; otherwise we will just have a (harmless)
    // zero row in the matrix.
    if (sfs_->reflectors(true))
        m.entry(2 + fibres + ref, 0) = 1;
    else if (sfs_->fibreReversing())
        m.entry(2 + fibres + ref, 0) = 2;

    // Two relations for the joining of boundaries:
    m.entry(3 + fibres + ref, 0) = -1;
    m.entry(3 + fibres + ref, 0) += matchingReln_[0][0];
    m.entry(3 + fibres + ref, 2 + genus) = matchingReln_[0][1];
    m.entry(4 + fibres + ref, 1 + genus) = -1;
    m.entry(4 + fibres + ref, 0) = matchingReln_[1][0];
    m.entry(4 + fibres + ref, 2 + genus) = matchingReln_[1][1];

    NAbelianGroup* ans = new NAbelianGroup();
    ans->addGroup(m);
    return ans;
}

std::ostream& NGraphLoop::writeName(std::ostream& out) const {
    sfs_->writeName(out);
    return out << " / [ " <<
        matchingReln_[0][0] << ',' << matchingReln_[0][1] << " | " <<
        matchingReln_[1][0] << ',' << matchingReln_[1][1] << " ]";
}

std::ostream& NGraphLoop::writeTeXName(std::ostream& out) const {
    sfs_->writeTeXName(out);
    return out << "_{\\homtwo{" <<
        matchingReln_[0][0] << "}{" << matchingReln_[0][1] << "}{" <<
        matchingReln_[1][0] << "}{" << matchingReln_[1][1] << "}}";
}

void NGraphLoop::reduce() {
    /**
     * Things to observe:
     *
     * 1. Inverting the matching matrix is harmless (it corresponds to
     * rotating the space a half-turn to switch the two boundary tori).
     *
     * 2. If we add a (1,1) twist to the SFS we can compensate by either:
     *    - setting row 2 -> row 2 + row 1, or
     *    - setting col 1 -> col 1 - col 2.
     */
    sfs_->reduce(false);

    // Bring the SFS obstruction constant back to zero.
    long b = sfs_->obstruction();
    if (b != 0) {
        sfs_->insertFibre(1, -b);
        matchingReln_[0][0] += b * matchingReln_[0][1];
        matchingReln_[1][0] += b * matchingReln_[1][1];
    }

    reduce(matchingReln_);

    // See if we can do any better by reflecting the entire space
    // and adding (1,1) twists to bring the obstruction constant back
    // up to zero again.
    // TODO: For non-orientable manifolds, reflect()/reduce() may yield
    // better results.
    NMatrix2 compMatch =
        NMatrix2(1, 0, sfs_->fibreCount(), 1) *
        NMatrix2(1, 0, 0, -1) *
        matchingReln_ *
        NMatrix2(1, 0, 0, -1);
    reduce(compMatch);

    if (simpler(compMatch, matchingReln_)) {
        // Do it.
        matchingReln_ = compMatch;
        sfs_->complementAllFibres();
    }
}

void NGraphLoop::reduce(NMatrix2& reln) {
    // Reduce both the original and the inverse, and see who comes out
    // on top.
    reduceBasis(reln);

    NMatrix2 inv = reln.inverse();
    reduceBasis(inv);

    if (simpler(inv, reln))
        reln = inv;
}

void NGraphLoop::reduceBasis(NMatrix2& reln) {
    // Use (1,1) / (1,-1) pairs to make the top-left element of the
    // matrix as close to zero as possible.
    if (reln[0][1] != 0 && reln[0][0] != 0) {
        long nOps = (labs(reln[0][0]) + ((labs(reln[0][1]) - 1) / 2)) /
            labs(reln[0][1]);
        if ((reln[0][0] > 0 && reln[0][1] > 0) ||
                (reln[0][0] < 0 && reln[0][1] < 0)) {
            // Same signs.
            for (long i = 0; i < nOps; i++) {
                reln[0][0] -= reln[0][1];
                reln[1][0] -= reln[1][1];
                reln[1][0] -= reln[0][0];
                reln[1][1] -= reln[0][1];
            }
        } else {
            // Opposite signs.
            for (long i = 0; i < nOps; i++) {
                reln[0][0] += reln[0][1];
                reln[1][0] += reln[1][1];
                reln[1][0] += reln[0][0];
                reln[1][1] += reln[0][1];
            }
        }

        // If abs(0,0) is half abs(0,1) then we might do better with yet
        // another operation.  Check with simpler() in this case.
        if (labs(reln[0][0]) * 2 == labs(reln[0][1])) {
            NMatrix2 alt = reln;

            if ((alt[0][0] > 0 && alt[0][1] > 0) ||
                    (alt[0][0] < 0 && alt[0][1] < 0)) {
                // Same signs.
                alt[0][0] -= alt[0][1];
                alt[1][0] -= alt[1][1];
                alt[1][0] -= alt[0][0];
                alt[1][1] -= alt[0][1];
            } else {
                // Opposite signs.
                alt[0][0] += alt[0][1];
                alt[1][0] += alt[1][1];
                alt[1][0] += alt[0][0];
                alt[1][1] += alt[0][1];
            }

            if (simpler(alt, reln))
                reln = alt;
        }
    } else {
        // TODO: We can still do something here.
    }
}

} // namespace regina