1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "algebra/nabeliangroup.h"
#include "manifold/ngraphpair.h"
#include "manifold/nsfs.h"
#include "manifold/nsfsaltset.h"
#include "maths/nmatrixint.h"
namespace regina {
NGraphPair::~NGraphPair() {
delete sfs_[0];
delete sfs_[1];
}
bool NGraphPair::operator < (const NGraphPair& compare) const {
if (*sfs_[0] < *compare.sfs_[0])
return true;
if (*compare.sfs_[0] < *sfs_[0])
return false;
if (*sfs_[1] < *compare.sfs_[1])
return true;
if (*compare.sfs_[1] < *sfs_[1])
return false;
return simpler(matchingReln_, compare.matchingReln_);
}
NAbelianGroup* NGraphPair::getHomologyH1() const {
// Just for safety (this should always be true anyway):
if (sfs_[0]->punctures(false) != 1 || sfs_[0]->punctures(true) != 0)
return 0;
if (sfs_[1]->punctures(false) != 1 || sfs_[1]->punctures(true) != 0)
return 0;
// Construct a matrix.
// Generators: fibre 0, base curves 0, base boundary 0,
// exceptional fibre boundaries 0, obstruction 0,
// reflector boundaries 0, reflector half-fibres 0,
// fibre 1, base curves 1, base boundary 1,
// exceptional fibre boundaries 1, obstruction 1,
// reflector boundaries 0, reflector half-fibres 1.
// Relations: base curve relation 0, exceptional fibre relations 0,
// obstruction relation 0, reflector relations 0,
// fibre constraint 0,
// base curve relation 1, exceptional fibre relations 1,
// obstruction relation 1, reflector relations 1,
// fibre constraint 1,
// joining of boundaries.
unsigned long genus0 = sfs_[0]->baseGenus();
unsigned long fibres0 = sfs_[0]->fibreCount();
unsigned long ref0 = sfs_[0]->reflectors();
unsigned long all0 = 3 + genus0 + fibres0 + 2 * ref0;
unsigned long genus1 = sfs_[1]->baseGenus();
unsigned long fibres1 = sfs_[1]->fibreCount();
unsigned long ref1 = sfs_[1]->reflectors();
// If we have an orientable base space, we get two curves per genus.
// The easiest thing to do is just to double each genus now.
if (sfs_[0]->baseOrientable())
genus0 *= 2;
if (sfs_[1]->baseOrientable())
genus1 *= 2;
NMatrixInt m(fibres0 + fibres1 + ref0 + ref1 + 8,
genus0 + fibres0 + 2 * ref0 + genus1 + fibres1 + 2 * ref1 + 6);
unsigned long i, f;
// The relation for each base orbifold:
for (i = 1 + genus0; i < 1 + genus0 + 1 + fibres0 + 1 + ref0; i++)
m.entry(0, i) = 1;
if (! sfs_[0]->baseOrientable())
for (i = 1; i < 1 + genus0; i++)
m.entry(0, i) = 2;
for (i = 1 + genus1; i < 1 + genus1 + 1 + fibres1 + 1 + ref1; i++)
m.entry(1, all0 + i) = 1;
if (! sfs_[1]->baseOrientable())
for (i = 1; i < 1 + genus1; i++)
m.entry(1, all0 + i) = 2;
// A relation for each exceptional fibre and obstruction constant:
NSFSFibre fibre;
for (f = 0; f < fibres0; f++) {
fibre = sfs_[0]->fibre(f);
m.entry(2 + f, 1 + genus0 + 1 + f) = fibre.alpha;
m.entry(2 + f, 0) = fibre.beta;
}
m.entry(2 + fibres0, 1 + genus0 + 1 + fibres0) = 1;
m.entry(2 + fibres0, 0) = sfs_[0]->obstruction();
for (f = 0; f < fibres1; f++) {
fibre = sfs_[1]->fibre(f);
m.entry(3 + fibres0 + f, all0 + 1 + genus1 + 1 + f) = fibre.alpha;
m.entry(3 + fibres0 + f, all0) = fibre.beta;
}
m.entry(3 + fibres0 + fibres1, all0 + 1 + genus1 + 1 + fibres1) = 1;
m.entry(3 + fibres0 + fibres1, all0) = sfs_[1]->obstruction();
// A relation for each reflector boundary:
for (i = 0; i < ref0; i++) {
m.entry(4 + fibres0 + fibres1 + i, 0) = -1;
m.entry(4 + fibres0 + fibres1 + i,
1 + genus0 + 1 + fibres0 + 1 + ref0 + i) = 2;
}
for (i = 0; i < ref1; i++) {
m.entry(4 + fibres0 + fibres1 + ref0 + i, all0) = -1;
m.entry(4 + fibres0 + fibres1 + ref0 + i,
all0 + 1 + genus1 + 1 + fibres1 + 1 + ref1 + i) = 2;
}
// A relation contraining each fibre type. This relationship only
// appears in some cases; otherwise we will just have a (harmless)
// zero row in the matrix.
if (sfs_[0]->reflectors(true))
m.entry(4 + fibres0 + fibres1 + ref0 + ref1, 0) = 1;
else if (sfs_[0]->fibreReversing())
m.entry(4 + fibres0 + fibres1 + ref0 + ref1, 0) = 2;
if (sfs_[1]->reflectors(true))
m.entry(5 + fibres0 + fibres1 + ref0 + ref1, all0) = 1;
else if (sfs_[1]->fibreReversing())
m.entry(5 + fibres0 + fibres1 + ref0 + ref1, all0) = 2;
// Finally, two relations for the joining of boundaries:
m.entry(6 + fibres0 + fibres1 + ref0 + ref1, all0) = -1;
m.entry(6 + fibres0 + fibres1 + ref0 + ref1, 0) = matchingReln_[0][0];
m.entry(6 + fibres0 + fibres1 + ref0 + ref1, 1 + genus0) =
matchingReln_[0][1];
m.entry(7 + fibres0 + fibres1 + ref0 + ref1, all0 + 1 + genus1) = -1;
m.entry(7 + fibres0 + fibres1 + ref0 + ref1, 0) = matchingReln_[1][0];
m.entry(7 + fibres0 + fibres1 + ref0 + ref1, 1 + genus0) =
matchingReln_[1][1];
NAbelianGroup* ans = new NAbelianGroup();
ans->addGroup(m);
return ans;
}
std::ostream& NGraphPair::writeName(std::ostream& out) const {
sfs_[0]->writeName(out);
out << " U/m ";
sfs_[1]->writeName(out);
return out << ", m = [ " <<
matchingReln_[0][0] << ',' << matchingReln_[0][1] << " | " <<
matchingReln_[1][0] << ',' << matchingReln_[1][1] << " ]";
}
std::ostream& NGraphPair::writeTeXName(std::ostream& out) const {
sfs_[0]->writeTeXName(out);
out << " \\bigcup_{\\homtwo{" <<
matchingReln_[0][0] << "}{" << matchingReln_[0][1] << "}{" <<
matchingReln_[1][0] << "}{" << matchingReln_[1][1] << "}} ";
return sfs_[1]->writeTeXName(out);
}
void NGraphPair::reduce() {
/**
* Things to observe:
*
* 1. If we add a (1,1) twist to sfs_[0] we can compensate by setting
* col 1 -> col 1 - col 2.
*
* 2. If we add a (1,1) twist to sfs_[1] we can compensate by setting
* row 2 -> row 2 + row 1.
*
* 3. We can negate the entire matrix without problems (this
* corresponds to rotating one space by 180 degrees).
*
* 4. If we negate all fibres in sfs_[0] we can compensate by
* negating col 1, though note that this negates the determinant
* of the matrix.
*
* 5. If we negate all fibres in sfs_[1] we can compensate by
* negating row 1, though again note that this negates the
* determinant of the matrix.
*
* 6. If we wish to swap the two spaces, we invert M.
*/
// Simplify each space and build a list of possible reflections and
// other representations that we wish to experiment with using.
NSFSAltSet alt0(sfs_[0]);
NSFSAltSet alt1(sfs_[1]);
delete sfs_[0];
delete sfs_[1];
// Decide which of these possible representations gives the nicest
// matching relation.
NSFSpace* use0 = 0;
NSFSpace* use1 = 0;
NMatrix2 useReln;
NMatrix2 tryReln;
unsigned i, j;
for (i = 0; i < alt0.size(); i++)
for (j = 0; j < alt1.size(); j++) {
// Insist on the leftmost space being at least as simple as
// the rightmost.
// See if the (i,j) combination is better than what we've
// seen so far.
tryReln = alt1.conversion(j) * matchingReln_ *
alt0.conversion(i).inverse();
reduceSign(tryReln);
// Try without space swapping.
if (! (*alt1[j] < *alt0[i])) {
if ((! use0) || simpler(tryReln, useReln)) {
use0 = alt0[i];
use1 = alt1[j];
useReln = tryReln;
} else if (! simpler(useReln, tryReln)) {
// The matrix is the same as our best. Compare spaces.
if (*alt0[i] < *use0 ||
(*alt0[i] == *use0 && *alt1[j] < *use1)) {
use0 = alt0[i];
use1 = alt1[j];
useReln = tryReln;
}
}
}
// Now try with space swapping.
if (! (*alt0[i] < *alt1[j])) {
tryReln = tryReln.inverse();
reduceSign(tryReln);
if ((! use0) || simpler(tryReln, useReln)) {
use0 = alt1[j];
use1 = alt0[i];
useReln = tryReln;
} else if (! simpler(useReln, tryReln)) {
// The matrix is the same as our best. Compare spaces.
if (*alt1[j] < *use0 ||
(*alt1[j] == *use0 && *alt0[i] < *use1)) {
use0 = alt1[j];
use1 = alt0[i];
useReln = tryReln;
}
}
}
}
// This should never happen, but just in case... let's not crash.
if (! (use0 && use1)) {
use0 = alt0[0];
use1 = alt1[0];
useReln = alt1.conversion(0) * matchingReln_ *
alt0.conversion(0).inverse();
reduceSign(useReln);
}
// Use what we found.
sfs_[0] = use0;
sfs_[1] = use1;
matchingReln_ = useReln;
// And what we don't use, delete.
alt0.deleteAll(use0, use1);
alt1.deleteAll(use0, use1);
// TODO: Exploit the (1,2) = (1,0) and (1,1) = (1,0) relations in
// the relevant non-orientable cases.
}
void NGraphPair::reduceSign(NMatrix2& reln) {
// All we can do is negate the entire matrix (180 degree rotation
// along the join).
if (simpler(- reln, reln))
reln.negate();
}
} // namespace regina
|