1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "algebra/nabeliangroup.h"
#include "manifold/ngraphtriple.h"
#include "manifold/nsfs.h"
#include "manifold/nsfsaltset.h"
#include "maths/nmatrixint.h"
namespace regina {
NGraphTriple::~NGraphTriple() {
delete end_[0];
delete end_[1];
delete centre_;
}
bool NGraphTriple::operator < (const NGraphTriple& compare) const {
if (*centre_ < *compare.centre_)
return true;
if (*compare.centre_ < *centre_)
return false;
if (*end_[0] < *compare.end_[0])
return true;
if (*compare.end_[0] < *end_[0])
return false;
if (*end_[1] < *compare.end_[1])
return true;
if (*compare.end_[1] < *end_[1])
return false;
if (simpler(matchingReln_[0], compare.matchingReln_[0]))
return true;
if (simpler(compare.matchingReln_[0], matchingReln_[0]))
return false;
return simpler(matchingReln_[1], compare.matchingReln_[1]);
}
NAbelianGroup* NGraphTriple::getHomologyH1() const {
// Just for safety (this should always be true anyway):
if (end_[0]->punctures(false) != 1 || end_[0]->punctures(true) != 0)
return 0;
if (end_[1]->punctures(false) != 1 || end_[1]->punctures(true) != 0)
return 0;
if (centre_->punctures(false) != 2 || centre_->punctures(true) != 0)
return 0;
// Construct a matrix.
// Generators:
// - Spaces are ordered centre, end 0, end 1.
// - For each space, generators are:
// - fibre
// - base curves
// - base boundary
// - exceptional fibre boundaries
// - obstruction
// - reflector boundaries
// - reflector half-fibres
// Relations:
// - For each space:
// - base curve relation
// - exceptional fibre relations
// - obstruction relation
// - reflector relations
// - fibre constraint
// - Plus two boundary joinings.
NSFSpace* sfs[3];
unsigned long genus[3], punc[3], fibres[3], ref[3], gens[3];
unsigned long start[3];
sfs[0] = centre_;
sfs[1] = end_[0];
sfs[2] = end_[1];
punc[0] = 2;
punc[1] = 1;
punc[2] = 1;
int s;
for (s = 0; s < 3; s++) {
genus[s] = sfs[s]->baseGenus();
fibres[s] = sfs[s]->fibreCount();
ref[s] = sfs[s]->reflectors();
// If we have an orientable base space, we get two curves per genus.
// The easiest thing seems to be to just double the genus now.
if (sfs[s]->baseOrientable())
genus[s] *= 2;
gens[s] = 1 + genus[s] + punc[s] + fibres[s] + 1 + ref[s] + ref[s];
}
start[0] = 0;
start[1] = gens[0];
start[2] = gens[0] + gens[1];
NMatrixInt m(fibres[0] + fibres[1] + fibres[2] +
ref[0] + ref[1] + ref[2] + 13, gens[0] + gens[1] + gens[2]);
unsigned long i, f;
NSFSFibre fibre;
unsigned long reln = 0;
// Relations internal to each space:
for (s = 0; s < 3; s++) {
// The relation for the base orbifold:
for (i = 1 + genus[s];
i < 1 + genus[s] + punc[s] + fibres[s] + 1 + ref[s]; i++)
m.entry(reln, start[s] + i) = 1;
if (! sfs[s]->baseOrientable())
for (i = 1; i < 1 + genus[s]; i++)
m.entry(reln, start[s] + i) = 2;
reln++;
// A relation for each exception fibre:
for (f = 0; f < fibres[s]; f++) {
fibre = sfs[s]->fibre(f);
m.entry(reln, start[s] + 1 + genus[s] + punc[s] + f) = fibre.alpha;
m.entry(reln, start[s]) = fibre.beta;
reln++;
}
// The obstruction constant:
m.entry(reln, start[s] + 1 + genus[s] + punc[s] + fibres[s]) = 1;
m.entry(reln, start[s]) = sfs[s]->obstruction();
reln++;
// A relation for each reflector boundary:
for (i = 0; i < ref[s]; i++) {
m.entry(reln, start[s]) = -1;
m.entry(reln, start[s] + 1 + genus[s] + punc[s] + fibres[s] +
1 + ref[s] + i) = 2;
reln++;
}
// A relation constraining the fibre. This relation only
// appears in some cases; otherwise we will just have a
// (harmless) zero row in the matrix.
if (sfs[s]->reflectors(true))
m.entry(reln, start[s]) = 1;
else if (sfs[s]->fibreReversing())
m.entry(reln, start[s]) = 2;
reln++;
}
// Joining of boundaries:
m.entry(reln, start[1]) = -1;
m.entry(reln, 0) = matchingReln_[0][0][0];
m.entry(reln, 1 + genus[0]) = matchingReln_[0][0][1];
reln++;
m.entry(reln, start[1] + 1 + genus[1]) = -1;
m.entry(reln, 0) = matchingReln_[0][1][0];
m.entry(reln, 1 + genus[0]) = matchingReln_[0][1][1];
reln++;
m.entry(reln, start[2]) = -1;
m.entry(reln, 0) = matchingReln_[1][0][0];
m.entry(reln, 1 + genus[0] + 1) = matchingReln_[1][0][1];
reln++;
m.entry(reln, start[2] + 1 + genus[2]) = -1;
m.entry(reln, 0) = matchingReln_[1][1][0];
m.entry(reln, 1 + genus[0] + 1) = matchingReln_[1][1][1];
reln++;
// Phew.
NAbelianGroup* ans = new NAbelianGroup();
ans->addGroup(m);
return ans;
}
std::ostream& NGraphTriple::writeName(std::ostream& out) const {
end_[0]->writeName(out);
out << " U/m ";
centre_->writeName(out);
out << " U/n ";
end_[1]->writeName(out);
NMatrix2 m0 = matchingReln_[0].inverse();
out << ", m = [ " <<
m0[0][0] << ',' << m0[0][1] << " | " <<
m0[1][0] << ',' << m0[1][1] << " ]";
out << ", n = [ " <<
matchingReln_[1][0][0] << ',' << matchingReln_[1][0][1] << " | " <<
matchingReln_[1][1][0] << ',' << matchingReln_[1][1][1] << " ]";
return out;
}
std::ostream& NGraphTriple::writeTeXName(std::ostream& out) const {
end_[0]->writeTeXName(out);
NMatrix2 m0 = matchingReln_[1].inverse();
out << " \\bigcup_{\\homtwo{" <<
m0[0][0] << "}{" << m0[0][1] << "}{" <<
m0[1][0] << "}{" << m0[1][1] << "}} ";
centre_->writeTeXName(out);
out << " \\bigcup_{\\homtwo{" <<
matchingReln_[1][0][0] << "}{" << matchingReln_[1][0][1] << "}{" <<
matchingReln_[1][1][0] << "}{" << matchingReln_[1][1][1] << "}} ";
end_[1]->writeTeXName(out);
return out;
}
void NGraphTriple::reduce() {
/**
* Things to observe:
*
* 1. If we add a (1,1) twist to centre_ we can compensate by setting
* col 1 -> col 1 - col 2 in one of the matching relations.
*
* 2. If we add a (1,1) twist to end_[i] we can compensate by setting
* row 2 -> row 2 + row 1 in matching relation i.
*
* 3. We can negate an entire matrix without problems (this
* corresponds to rotating some spaces by 180 degrees).
*
* 4. If we negate all fibres in centre_ we can compensate by
* negating col 1 of both matching relations, though note
* that this negates the determinant of each matrix.
*
* 5. If we negate all fibres in end_[i] we can compensate by
* negating row 1 of matching relation i, though again note that
* this negates the determinant of the matrix.
*
* 6. If we wish to swap the order of spaces, we swap both matrices.
*/
// Simplify each space and build a list of possible reflections and
// other representations that we wish to experiment with using.
NSFSAltSet alt0(end_[0]);
NSFSAltSet alt1(end_[1]);
NSFSAltSet altCentre(centre_);
delete end_[0];
delete end_[1];
delete centre_;
// Decide which of these possible representations gives the nicest
// matching relations.
NSFSpace* use0 = 0;
NSFSpace* use1 = 0;
NSFSpace* useCentre = 0;
NMatrix2 useReln[2];
NMatrix2 tryReln[2], tmpReln;
unsigned i0, i1, c;
for (i0 = 0; i0 < alt0.size(); i0++)
for (i1 = 0; i1 < alt1.size(); i1++)
for (c = 0; c < altCentre.size(); c++) {
// See if (i0, i1, c) gives us a combination better than
// anything we've seen so far.
tryReln[0] = alt0.conversion(i0) * matchingReln_[0] *
altCentre.conversion(c).inverse();
if (altCentre.reflected(c))
tryReln[1] = alt1.conversion(i1) * matchingReln_[1] *
NMatrix2(1, 0, 0, -1);
else
tryReln[1] = alt1.conversion(i1) * matchingReln_[1];
reduceBasis(tryReln[0], tryReln[1]);
// Insist on the first end space being at least as
// simple as the second.
// First try without end space swapping.
if (! (*alt1[i1] < *alt0[i0])) {
if ((! use0) || simpler(tryReln[0], tryReln[1],
useReln[0], useReln[1])) {
use0 = alt0[i0];
use1 = alt1[i1];
useCentre = altCentre[c];
useReln[0] = tryReln[0];
useReln[1] = tryReln[1];
} else if (! simpler(useReln[0], useReln[1],
tryReln[0], tryReln[1])) {
// The matrices are the same as our best.
// Compare spaces.
if (*altCentre[c] < *useCentre ||
(*altCentre[c] == *useCentre &&
*alt0[i0] < *use0) ||
(*altCentre[c] == *useCentre &&
*alt0[i0] == *use0 &&
*alt1[i1] < *use1)) {
use0 = alt0[i0];
use1 = alt1[i1];
useCentre = altCentre[c];
useReln[0] = tryReln[0];
useReln[1] = tryReln[1];
}
}
}
// Now try with end space swapping.
if (! (*alt0[i0] < *alt1[i1])) {
reduceBasis(tryReln[1], tryReln[0]);
if ((! use0) || simpler(tryReln[1], tryReln[0],
useReln[0], useReln[1])) {
use0 = alt1[i1];
use1 = alt0[i0];
useCentre = altCentre[c];
useReln[0] = tryReln[1];
useReln[1] = tryReln[0];
} else if (! simpler(useReln[0], useReln[1],
tryReln[1], tryReln[0])) {
// The matrices are the same as our best.
// Compare spaces.
if (*altCentre[c] < *useCentre ||
(*altCentre[c] == *useCentre &&
*alt1[i1] < *use0) ||
(*altCentre[c] == *useCentre &&
*alt1[i1] == *use0 &&
*alt0[i0] < *use1)) {
use0 = alt1[i1];
use1 = alt0[i0];
useCentre = altCentre[c];
useReln[0] = tryReln[1];
useReln[1] = tryReln[0];
}
}
}
}
// This should never happen, but just in case... let's not crash.
if (! (use0 && use1 && useCentre)) {
use0 = alt0[0];
use1 = alt1[0];
useCentre = altCentre[0];
useReln[0] = alt0.conversion(0) * matchingReln_[0] *
altCentre.conversion(0).inverse();
useReln[1] = alt1.conversion(0) * matchingReln_[1] *
altCentre.conversion(0).inverse();
reduceBasis(useReln[0], useReln[1]);
}
// Use what we found.
end_[0] = use0;
end_[1] = use1;
centre_ = useCentre;
matchingReln_[0] = useReln[0];
matchingReln_[1] = useReln[1];
// And what we don't use, delete.
alt0.deleteAll(use0, use1);
alt1.deleteAll(use0, use1);
altCentre.deleteAll(useCentre);
// TODO: More reductions!
}
void NGraphTriple::reduceBasis(NMatrix2& reln0, NMatrix2& reln1) {
/**
* The operation we allow here is to add a (1,1) / (1,-1) pair of
* twists to centre_, which means:
*
* col 1 -> col 1 + col 2 in one of the matching relations;
* col 1 -> col 1 - col 2 in the other.
*/
// Start by making the first entry in each column 2 positive (for
// consistency).
if (reln0[0][1] < 0 || (reln0[0][1] == 0 && reln0[1][1] < 0))
reln0.negate();
if (reln1[0][1] < 0 || (reln1[0][1] == 0 && reln1[1][1] < 0))
reln1.negate();
// Go for the local minimum.
// TODO: We can certainly do better than this (both in terms of being
// faster [use division] and simpler matrices coming out the end).
NMatrix2 alt0, alt1;
while (true) {
alt0 = reln0 * NMatrix2(1, 0, 1, 1);
alt1 = reln1 * NMatrix2(1, 0, -1, 1);
if (simpler(alt0, alt1, reln0, reln1)) {
reln0 = alt0;
reln1 = alt1;
continue;
}
alt0 = reln0 * NMatrix2(1, 0, -1, 1);
alt1 = reln1 * NMatrix2(1, 0, 1, 1);
if (simpler(alt0, alt1, reln0, reln1)) {
reln0 = alt0;
reln1 = alt1;
continue;
}
// We're at a local minimum. Call it enough for now.
break;
}
// Final tidying up.
reduceSign(reln0);
reduceSign(reln1);
}
void NGraphTriple::reduceSign(NMatrix2& reln) {
// Make the first non-zero entry positive.
int i, j;
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++) {
if (reln[i][j] > 0)
return;
if (reln[i][j] < 0) {
// Negate everything (180 degree rotation along the join)
// and return.
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
reln[i][j] = - reln[i][j];
return;
}
}
// The matrix is entirely zero (which, incidentally, should never
// happen). Do nothing.
}
} // namespace regina
|