1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <algorithm>
#include <iterator>
#include <sstream>
#include "algebra/nabeliangroup.h"
#include "manifold/nlensspace.h"
#include "manifold/nsfs.h"
#include "maths/nmatrixint.h"
#include "maths/numbertheory.h"
#include "subcomplex/nsatannulus.h"
#include "triangulation/ntriangulation.h"
#include "utilities/boostutils.h"
namespace regina {
namespace {
/**
* Some small exceptional fibres that we will use for comparisons.
*/
NSFSFibre two(2, 1);
NSFSFibre three(3, 1);
NSFSFibre threeB(3, 2);
NSFSFibre four(4, 1);
}
typedef std::list<NSFSFibre>::iterator FibreIterator;
typedef std::list<NSFSFibre>::const_iterator FibreIteratorConst;
std::ostream& operator << (std::ostream& out, const NSFSFibre& f) {
return (out << '(' << f.alpha << ',' << f.beta << ')');
}
void NSFSpace::operator = (const NSFSpace& cloneMe) {
class_ = cloneMe.class_;
genus_ = cloneMe.genus_;
punctures_ = cloneMe.punctures_;
puncturesTwisted_ = cloneMe.puncturesTwisted_;
reflectors_ = cloneMe.reflectors_;
reflectorsTwisted_ = cloneMe.reflectorsTwisted_;
fibres_ = cloneMe.fibres_;
nFibres_ = cloneMe.nFibres_;
b_ = cloneMe.b_;
}
NSFSFibre NSFSpace::fibre(unsigned long which) const {
FibreIteratorConst pos = fibres_.begin();
advance(pos, which);
return *pos;
}
void NSFSpace::addHandle(bool fibreReversing) {
// First fix the class.
// The transitions between classes have been worked out on paper
// case by case (in particular, following how the generators of the
// handle relate to the new crosscap generators in the non-orientable
// case).
// Recall also that in the orientable case we can convert +/- to -/-,
// and in the non-orientable case we can convert +/+/+/- to +/-/-/-
// (where + and - correspond to fibre-preserving and fibre-reversing
// generators respectively). See Orlik [1972], p89 for details.
if (fibreReversing) {
// Fibre-reversing.
switch (class_) {
case o1:
class_ = o2; break;
case n1:
class_ = (genus_ % 2 == 0 ? n4 : n3); break;
case n2:
class_ = n4; break;
case bo1:
class_ = bo2; break;
case bn1:
case bn2:
class_ = bn3; break;
default:
// No change.
break;
}
} else {
// Fibre-preserving.
// Never changes the class.
}
// Finally increment the genus (either orientable or non-orientable).
if (baseOrientable())
genus_++;
else
genus_ += 2;
}
void NSFSpace::addCrosscap(bool fibreReversing) {
// We're making the base orbifold non-orientable.
// Convert orientable genus to non-orientable genus if required.
if (baseOrientable())
genus_ *= 2;
// Now fix the class.
// The transitions between classes have been worked out on paper
// case by case (in particular, following how the generators of the
// original handles relate to the reformulated crosscap generators in
// the orientable case).
// Recall also that in the orientable case we can convert +/- to -/-,
// and in the non-orientable case we can convert +/+/+/- to +/-/-/-
// (where + and - correspond to fibre-preserving and fibre-reversing
// generators respectively). See Orlik [1972], p89 for details.
if (fibreReversing) {
// Fibre-reversing.
switch(class_) {
case o1:
class_ = n2; break;
case o2:
class_ = n4; break;
case n1:
class_ = (genus_ % 2 == 0 ? n4 : n3); break;
case bo1:
class_ = bn2; break;
case bo2:
case bn1:
class_ = bn3; break;
default:
// No change.
break;
}
} else {
// Fibre-preserving.
switch(class_) {
case o1:
class_ = n1; break;
case o2:
case n2:
case n4:
class_ = n3; break;
case n3:
class_ = n4; break;
case bo1:
class_ = bn1; break;
case bo2:
case bn2:
class_ = bn3; break;
default:
// No change.
break;
}
}
// Finally increment the genus.
// We always have non-orientable genus here.
genus_++;
}
void NSFSpace::addPuncture(bool twisted, unsigned long nPunctures) {
if (twisted) {
puncturesTwisted_ += nPunctures;
if (baseOrientable())
class_ = bo2;
else
class_ = bn3;
} else {
punctures_ += nPunctures;
switch(class_) {
case o1:
class_ = bo1; break;
case o2:
class_ = bo2; break;
case n1:
class_ = bn1; break;
case n2:
class_ = bn2; break;
case n3:
case n4:
class_ = bn3; break;
default:
// No change.
break;
}
}
}
void NSFSpace::addReflector(bool twisted, unsigned long nReflectors) {
if (twisted) {
reflectorsTwisted_ += nReflectors;
if (baseOrientable())
class_ = bo2;
else
class_ = bn3;
} else {
reflectors_ += nReflectors;
switch(class_) {
case o1:
class_ = bo1; break;
case o2:
class_ = bo2; break;
case n1:
class_ = bn1; break;
case n2:
class_ = bn2; break;
case n3:
case n4:
class_ = bn3; break;
default:
// No change.
break;
}
}
}
void NSFSpace::insertFibre(long alpha, long beta) {
// We are assuming that the parameters of this fibre are coprime and
// that alpha is strictly positive.
// Sanity check.
if (alpha == 0) {
// TODO: We should probably throw an exception here or something.
std::cerr << "ERROR: Inserting illegal fibre (0," << beta <<
")." << std::endl;
return;
}
// Is it a regular fibre?
if (alpha == 1) {
b_ += beta;
return;
}
// Put the fibre in standard form.
b_ += (beta / alpha);
beta = beta % alpha;
if (beta < 0) {
beta += alpha;
b_--;
}
// Now we have 0 <= beta < alpha and alpha >= 2.
nFibres_++;
NSFSFibre f(alpha, beta);
fibres_.insert(lower_bound(fibres_.begin(), fibres_.end(), f), f);
// We're done!
}
void NSFSpace::reduce(bool mayReflect) {
FibreIterator it, it2;
// If the SFS is non-orientable, we can get rid of b completely and
// convert most (if not all) exceptional fibres to beta <= alpha / 2.
if (reflectors_ || reflectorsTwisted_) {
// (1,1) == (1,0).
b_ = 0;
} else if (fibreNegating() && b_) {
// (p,q) == (p,-q), and so (1,2) == (1,0).
b_ = b_ % 2;
if (b_ && nFibres_) {
// We have b == +/-1.
// Merge this into the first exceptional fibre instead.
// Instead of modifying the fibre directly, delete and reinsert
// so that sorted order is maintained.
NSFSFibre f(fibres_.front().alpha,
fibres_.front().alpha - fibres_.front().beta);
fibres_.pop_front();
// Rather than doing a binary search, just hunt from the
// front (since we haven't changed alpha, so the fibre will
// generally stay near the front).
it = fibres_.begin();
while (it != fibres_.end() && (*it) < f)
it++;
fibres_.insert(it, f);
b_ = 0;
}
}
// Completely finish off the case with no exceptional fibres.
if (! nFibres_) {
// Not much more we can do.
// Just reflect if it helps.
if (mayReflect && b_ < 0)
b_ = -b_;
return;
}
// FACT: There is at least one fibre.
// Normalise them as best we can.
if (fibreNegating()) {
// (p,q) == (p,-q) == (1,1) (p,p-q) == (1,-1) (p,p-q).
// We can therefore reduce fibres with large beta in pairs.
// Except for the following cases, where we can simply reduce
// all of them.
if (reflectors_ || reflectorsTwisted_ || fibres_.front().alpha == 2) {
// (1,1) == (1,0) if we have reflectors, and
// (1,1) (2,1) == (1,2) (2,-1) == (2,1) if we have some alpha = 2.
// So we can reduce _all_ fibres with large beta.
it = fibres_.begin();
while (it != fibres_.end())
if (it->beta * 2 > it->alpha)
it = negateFibreDown(it);
else
it++;
} else {
// We have to do them in pairs.
// A place to store the first of a pair while we look for
// the second:
it2 = fibres_.end();
it = fibres_.begin();
while (it != fibres_.end()) {
if (it->beta * 2 > it->alpha) {
// This one's worth reducing.
if (it2 == fibres_.end()) {
// First in a pair.
// Remember it and move on.
it2 = it++;
} else {
// Second in a pair.
// Process them both (first then last, so we
// don't mess up the sequence of iterators in
// the loop).
negateFibreDown(it2);
it = negateFibreDown(it);
it2 = fibres_.end();
}
} else
it++;
}
// Was there anything left over? If so, pair it with the
// final fibre (which will get larger, not smaller).
if (it2 != fibres_.end()) {
// It can be shown that, if we are already looking at
// the final fibre, this code will do the right thing
// (specifically, switch this with another fibre if this
// will improve things, and switch this with itself if
// it won't).
negateFibreDown(it2);
// No need to resort the final fibre, since it gets
// larger anyway.
fibres_.back().beta = fibres_.back().alpha -
fibres_.back().beta;
}
}
} else if (reflectors_ || reflectorsTwisted_) {
// Individual fibres cannot be negated, but we have reflector
// boundaries.
// We still have the option of simultaneously replacing all (p,q)
// with (p,-q) == (1,-1) (p,p-q) == (p,p-q) if it's worth it.
if (mayReflect) {
unsigned long nLarge = 0;
unsigned long nSmall = 0;
// Don't count (2,1) fibres, they don't get changed anyway.
for (it = fibres_.begin(); it != fibres_.end() && it->alpha == 2;
it++)
;
// Remember where we really started.
it2 = it;
for ( ; it != fibres_.end(); it++) {
if (it->beta * 2 > it->alpha)
nLarge++;
else
nSmall++;
}
// So. Was it worth it?
if (nLarge > nSmall)
complementAllFibres();
else if (nLarge == nSmall && it2 != fibres_.end()) {
// We need to look in a little more detail.
FibreIterator next;
bool shouldReflect = false;
// Restore our starting position, and let it2 become a
// temporary variable again.
it = it2;
while (it != fibres_.end()) {
// INV: it points to the next block with the same
// value of alpha.
it2 = it;
for (it2++; it2 != fibres_.end() &&
it2->alpha == it->alpha; it2++)
;
// Now it2 points to the first element of the
// following block.
next = it2;
it2--;
// Now it2 points to the last element of this block.
// If the block were negated, it would also be
// reversed; see what would happen.
while (it != next) {
if (it2->alpha - it2->beta < it->beta) {
shouldReflect = true;
next = fibres_.end();
break;
} else if (it2->alpha - it2->beta > it->beta) {
shouldReflect = false;
next = fibres_.end();
break;
}
// Still tied.
it++;
it2--;
}
// Move on to the next block.
it = next;
}
if (shouldReflect)
complementAllFibres();
}
}
} else {
// Individual fibres cannot be negated, no reflector boundaries.
// The best we can do is just reflect everything if b is far enough
// negative.
if (mayReflect) {
if (b_ < (-b_ - static_cast<long>(nFibres_))) {
b_ = -b_ - static_cast<long>(nFibres_);
complementAllFibres();
} else if (b_ == (-b_ - static_cast<long>(nFibres_))) {
// Reflecting won't change b, but it will complement all
// fibres. See whether this is worthwhile.
FibreIterator next;
bool shouldReflect = false;
it = fibres_.begin();
while (it != fibres_.end()) {
// INV: it points to the next block with the same
// value of alpha.
it2 = it;
for (it2++; it2 != fibres_.end() &&
it2->alpha == it->alpha; it2++)
;
// Now it2 points to the first element of the
// following block.
next = it2;
it2--;
// Now it2 points to the last element of this block.
// If the block were negated, it would also be
// reversed; see what would happen.
while (it != next) {
if (it2->alpha - it2->beta < it->beta) {
shouldReflect = true;
next = fibres_.end();
break;
} else if (it2->alpha - it2->beta > it->beta) {
shouldReflect = false;
next = fibres_.end();
break;
}
// Still tied.
it++;
it2--;
}
// Move on to the next block.
it = next;
}
if (shouldReflect)
complementAllFibres();
}
}
}
}
std::list<NSFSFibre>::iterator NSFSpace::negateFibreDown(
std::list<NSFSFibre>::iterator it) {
// The replacement fibre.
NSFSFibre f(it->alpha, it->alpha - it->beta);
// The return value. This is also a strict upper bound for the
// location of the replacement fibre.
std::list<NSFSFibre>::iterator next = it;
next++;
// Delete the old iterator.
fibres_.erase(it);
// Insert the new. Treat front insertion specially, so we don't
// find ourselves doing an it-- past the beginning.
if (fibres_.empty() || f < fibres_.front()) {
fibres_.push_front(f);
return next;
}
// It's not a front insertion. Find the insertion place.
// Note that this loop is guaranteed at least one iteration.
for (it = next; it == fibres_.end() || f < *it; it--)
;
// We have the first instance of *it <= f.
// This means the insertion should take place immediately after it.
it++;
fibres_.insert(it, f);
return next;
}
void NSFSpace::complementAllFibres() {
FibreIterator it, it2, next;
for (it = fibres_.begin(); it != fibres_.end(); it++)
it->beta = it->alpha - it->beta;
// Ensure that the array remains in sorted order.
// Each portion of the array with fixed index must be reversed.
NSFSFibre tmpFibre;
it = fibres_.begin();
while (it != fibres_.end()) {
// INV: it points to the next block to be reversed.
it2 = it;
for (it2++; it2 != fibres_.end() && (*it2).alpha == (*it).alpha; it2++)
;
// Now it2 points to the first element of the following block.
next = it2;
it2--;
// Now it2 points to the last element of this block.
// Reverse this block by swapping elements at each end and
// working towards the centre.
while (it != it2) {
tmpFibre = (*it);
(*it) = (*it2);
(*it2) = tmpFibre;
it++;
if (it == it2)
break;
it2--;
}
// Move on to the next block.
it = next;
}
}
NLensSpace* NSFSpace::isLensSpace() const {
if (punctures_ || puncturesTwisted_ || reflectors_ || reflectorsTwisted_) {
// Not a chance.
return 0;
}
if (genus_ == 0 && class_ == o1) {
// Base orbifold is the sphere.
if (fibres_.empty())
return new NLensSpace(b_ >= 0 ? b_ : -b_, 1);
else if (nFibres_ == 1) {
long q = fibres_.front().alpha;
long p = fibres_.front().beta + (b_ * q);
// We have SFS [S2 : (q,p)].
return new NLensSpace(p >= 0 ? p : -p, q >= 0 ? q : -q);
} else if (nFibres_ == 2) {
// Precisely two fibres.
long q = fibres_.back().alpha;
long p = fibres_.back().beta + (b_ * q);
long x = fibres_.front().alpha;
long y = fibres_.front().beta;
// INV: We have SFS [S2 : (x,y) (q,p)] with 0 <= y < x.
while (y > 0) {
x = x - y;
q = q + p;
if (y >= x) {
p += (q * (y / x));
y = y % x;
}
}
// We should now have (x,y) == (1,0).
return new NLensSpace(p >= 0 ? p : -p, q >= 0 ? q : -q);
}
// Not a lens space.
return 0;
} else if (genus_ == 1 && class_ == n2) {
// Base orbifold is the projective plane.
if (nFibres_ == 1) {
// We have precisely one exceptional fibre.
long a = fibres_.front().alpha;
long n = b_ * a + fibres_.front().beta;
if (n == 1 || n == -1)
return new NLensSpace(4 * a, 2 * a - 1);
}
// Not a lens space.
return 0;
}
return 0;
}
bool NSFSpace::operator == (const NSFSpace& compare) const {
if (class_ != compare.class_)
return false;
if (genus_ != compare.genus_)
return false;
if (punctures_ != compare.punctures_)
return false;
if (puncturesTwisted_ != compare.puncturesTwisted_)
return false;
if (reflectors_ != compare.reflectors_)
return false;
if (reflectorsTwisted_ != compare.reflectorsTwisted_)
return false;
if (nFibres_ != compare.nFibres_)
return false;
if (! (fibres_ == compare.fibres_))
return false;
if (b_ != compare.b_)
return false;
// Exactly the same!
return true;
}
bool NSFSpace::operator < (const NSFSpace& compare) const {
// Double the genus if it's orientable, so that we can line up tori
// with Klein bottles, etc.
unsigned long adjGenus1 = (baseOrientable() ? genus_ * 2 : genus_);
unsigned long adjGenus2 = (compare.baseOrientable() ?
compare.genus_ * 2 : compare.genus_);
// Too many punctures is worse than anything.
if (punctures_ + puncturesTwisted_ <
compare.punctures_ + compare.puncturesTwisted_)
return true;
if (punctures_ + puncturesTwisted_ >
compare.punctures_ + compare.puncturesTwisted_)
return false;
// After this, order by a combination of genus and reflectors to
// group closed spaces with approximately the same complexity.
if (adjGenus1 + reflectors_ + reflectorsTwisted_ <
adjGenus2 + compare.reflectors_ + compare.reflectorsTwisted_)
return true;
if (adjGenus1 + reflectors_ + reflectorsTwisted_ >
adjGenus2 + compare.reflectors_ + compare.reflectorsTwisted_)
return false;
// Within this genus + reflectors combination, reflectors are worse.
if (reflectors_ + reflectorsTwisted_ <
compare.reflectors_ + compare.reflectorsTwisted_)
return true;
if (reflectors_ + reflectorsTwisted_ >
compare.reflectors_ + compare.reflectorsTwisted_)
return false;
// If we reach this point, we must have adjGenus1 == adjGenus2.
// Down to more mundane comparisons.
// Comparing class will catch orientability also (placing orientable
// before non-orientable).
if (class_ < compare.class_)
return true;
if (class_ > compare.class_)
return false;
if (reflectorsTwisted_ < compare.reflectorsTwisted_)
return true;
if (reflectorsTwisted_ > compare.reflectorsTwisted_)
return false;
if (puncturesTwisted_ < compare.puncturesTwisted_)
return true;
if (puncturesTwisted_ > compare.puncturesTwisted_)
return false;
if (nFibres_ < compare.nFibres_)
return true;
if (nFibres_ > compare.nFibres_)
return false;
if (fibres_ < compare.fibres_)
return true;
if (compare.fibres_ < fibres_)
return false;
if (b_ < compare.b_)
return true;
if (b_ > compare.b_)
return false;
// Exactly the same!
return false;
}
NTriangulation* NSFSpace::construct() const {
// Things that we don't deal with just yet.
if (punctures_ || puncturesTwisted_ || reflectors_ || reflectorsTwisted_)
return 0;
// We already know how to construct lens spaces.
NLensSpace* lens = isLensSpace();
if (lens) {
NTriangulation* t = lens->construct();
delete lens;
return t;
}
// Currently we work over the 2-sphere only.
if (genus_ != 0 || class_ != o1)
return 0;
// Since we've already dealt with lens spaces, we must have at least
// three exceptional fibres. Build a blocked structure.
NTriangulation* ans = new NTriangulation();
NTetrahedron *a, *b, *c;
// Begin with the first triangular solid torus.
a = new NTetrahedron();
b = new NTetrahedron();
c = new NTetrahedron();
a->joinTo(1, b, NPerm());
b->joinTo(2, c, NPerm());
c->joinTo(3, a, NPerm(1, 2, 3, 0));
ans->addTetrahedron(a);
ans->addTetrahedron(b);
ans->addTetrahedron(c);
std::list<NSFSFibre>::const_iterator fit = fibres_.begin();
NSatAnnulus(a, NPerm(1, 0, 2, 3), b, NPerm(1, 2, 0, 3)).
attachLST(ans, fit->alpha, fit->beta);
fit++;
NSatAnnulus(b, NPerm(2, 1, 3, 0), c, NPerm(2, 3, 1, 0)).
attachLST(ans, fit->alpha, fit->beta);
fit++;
// Run through the rest of the fibres, one at a time. Each extra
// fibre (aside from the third) will require another triangular
// solid torus.
NTetrahedron* prevA = a;
NTetrahedron* prevC = c;
NSFSFibre nextFibre = *fit++;
while (fit != fibres_.end()) {
a = new NTetrahedron();
b = new NTetrahedron();
c = new NTetrahedron();
a->joinTo(3, prevA, NPerm(2, 3));
b->joinTo(3, prevC, NPerm(0, 2, 3, 1));
a->joinTo(1, b, NPerm());
b->joinTo(2, c, NPerm());
c->joinTo(3, a, NPerm(1, 2, 3, 0));
ans->addTetrahedron(a);
ans->addTetrahedron(b);
ans->addTetrahedron(c);
NSatAnnulus(b, NPerm(2, 1, 3, 0), c, NPerm(2, 3, 1, 0)).
attachLST(ans, nextFibre.alpha, nextFibre.beta);
prevA = a;
prevC = c;
nextFibre = *fit++;
}
// We have one remaining fibre. Fill in the final annulus of the
// last triangular solid torus.
NSatAnnulus(a, NPerm(1, 0, 3, 2), c, NPerm(2, 3, 0, 1)).attachLST(ans,
nextFibre.alpha, -(nextFibre.beta + b_ * nextFibre.alpha));
ans->gluingsHaveChanged();
return ans;
}
NAbelianGroup* NSFSpace::getHomologyH1() const {
if (punctures_ || puncturesTwisted_) {
// Not just now.
return 0;
}
// Construct the presentation of the fundamental group and
// abelianise. The presentation without reflectors is given on
// p91 of Orlik [1972]. Each reflector gives additional generators
// y and z, for which y acts as a boundary component and z^2 = fibre.
NAbelianGroup* ans = new NAbelianGroup();
unsigned long nRef = reflectors_ + reflectorsTwisted_;
bool twisted = fibreReversing();
if (baseOrientable()) {
// Orientable base surface.
// Generators: a_1, b_1, ..., a_g, b_g, q_1, q_2, ..., q_r, h,
// y_1, z_1, ..., y_t, z_t (for reflectors)
// Relations:
// q_j^alpha_j h^beta_j = 1
// z_j^2 = h
// q_1 ... q_r y_1 ... y_t = h^b
// h^2 = 1 (if twisted), or h = 1 (if twisted reflectors)
//
// We ignore a_i and b_i, and just add extra rank 2g at the end.
// Generators in the matrix are q_1, ..., q_r, h, z_1, ..., z_t,
// y_1, ..., y_t.
NMatrixInt pres(nFibres_ + nRef + (twisted ? 2 : 1),
nFibres_ + 1 + 2 * nRef);
unsigned long which = 0;
for (FibreIteratorConst it = fibres_.begin(); it != fibres_.end();
it++) {
pres.entry(nFibres_ + nRef, which) = 1;
pres.entry(which, nFibres_) = it->beta;
pres.entry(which, which) = it->alpha;
which++;
}
unsigned long ref;
for (ref = 0; ref < nRef; ref++) {
pres.entry(nFibres_ + ref, nFibres_) = -1;
pres.entry(nFibres_ + ref, nFibres_ + 1 + ref) = 2;
pres.entry(nFibres_ + nRef, nFibres_ + 1 + nRef + ref) = 1;
}
pres.entry(nFibres_ + nRef, nFibres_) = -b_;
if (reflectorsTwisted_)
pres.entry(nFibres_ + nRef + 1, nFibres_) = 1;
else if (twisted)
pres.entry(nFibres_ + nRef + 1, nFibres_) = 2;
ans->addGroup(pres);
ans->addRank(2 * genus_);
} else {
// Non-orientable base surface.
// Generators: v_1, v_2, ..., v_g, q_1, q_2, ..., q_r, h,
// y_1, z_1, ..., y_t, z_t (for reflectors)
// Relations:
// q_j^alpha_j h^beta_j = 1
// z_j^2 = h
// q_1 ... q_r v_1^2 ... v_g^2 y_1 ... y_t = h^b
// h^2 = 1 (if twisted), or h = 1 (if twisted reflectors)
//
// Generators in the matrix are q_1, ..., q_r, v_1, ..., v_g, h,
// z_1, ..., z_t, y_1, ..., y_t.
NMatrixInt pres(nFibres_ + nRef + (twisted ? 2 : 1),
nFibres_ + genus_ + 1 + 2 * nRef);
unsigned long which = 0;
for (FibreIteratorConst it = fibres_.begin(); it != fibres_.end();
it++) {
pres.entry(nFibres_ + nRef, which) = 1;
pres.entry(which, nFibres_ + genus_) = it->beta;
pres.entry(which, which) = it->alpha;
which++;
}
unsigned long ref;
for (ref = 0; ref < nRef; ref++) {
pres.entry(nFibres_ + ref, nFibres_ + genus_) = -1;
pres.entry(nFibres_ + ref, nFibres_ + genus_ + 1 + ref) = 2;
pres.entry(nFibres_ + nRef, nFibres_ + genus_ + 1 + nRef + ref) = 1;
}
for (which = 0; which < genus_; which++)
pres.entry(nFibres_ + nRef, nFibres_ + which) = 2;
pres.entry(nFibres_ + nRef, nFibres_ + genus_) = -b_;
if (reflectorsTwisted_)
pres.entry(nFibres_ + nRef + 1, nFibres_ + genus_) = 1;
else if (twisted)
pres.entry(nFibres_ + nRef + 1, nFibres_ + genus_) = 2;
ans->addGroup(pres);
}
return ans;
}
void NSFSpace::writeBaseExtraCount(std::ostream& out, unsigned long count,
const char* object, bool tex) {
out << " + " << count << (tex ? "\\ \\mbox{" : " ") << object;
if (count != 1)
out << 's';
if (tex)
out << '}';
}
std::ostream& NSFSpace::writeCommonBase(std::ostream& out, bool tex) const {
bool named = false;
// IMPORTANT: We do not allow spaces with > 2 reflector boundary
// components to be named. Otherwise this messes up the reflector
// boundary output.
unsigned long totRef = reflectors_ + reflectorsTwisted_;
unsigned long totBdries = totRef + punctures_ + puncturesTwisted_;
if (baseOrientable()) {
// Orientable base surface.
if (genus_ == 0 && totBdries == 0) {
out << (tex ? "S^2" : "S2");
named = true;
} else if (genus_ == 0 && totBdries == 1) {
if (totRef && tex)
out << "\\overline{";
out << 'D';
if (totRef)
out << (tex ? '}' : '_');
named = true;
} else if (genus_ == 0 && totBdries == 2) {
if (totRef == 1 && tex)
out << "\\overline{";
else if (totRef == 2 && tex)
out << "\\overline{\\overline{";
out << 'A';
if (totRef == 1)
out << (tex ? '}' : '_');
else if (totRef == 2)
out << (tex ? "}}" : "=");
named = true;
} else if (genus_ == 1 && totBdries == 0) {
out << (tex ? "T^2" : "T");
named = true;
}
} else {
// Non-orientable base surface.
if (genus_ == 1 && totBdries == 0) {
out << (tex ? "\\mathbb{R}P^2" : "RP2");
named = true;
} else if (genus_ == 1 && totBdries == 1) {
if (totRef && tex)
out << "\\overline{";
out << 'M';
if (totRef)
out << (tex ? '}' : '_');
named = true;
} else if (genus_ == 2 && totBdries == 0) {
out << (tex ? "K^2" : "KB");
named = true;
}
}
if (! named) {
if (baseOrientable())
out << (tex ? "\\mathrm{Or},\\ " : "Or, ")
<< "g=" << genus_;
else
out << (tex ? "\\mathrm{Non-or},\\ " : "Non-or, ")
<< "g=" << genus_;
if (punctures_)
writeBaseExtraCount(out, punctures_, "puncture", tex);
if (puncturesTwisted_)
writeBaseExtraCount(out, puncturesTwisted_,
"twisted puncture", tex);
if (reflectors_)
writeBaseExtraCount(out, reflectors_, "reflector", tex);
if (reflectorsTwisted_)
writeBaseExtraCount(out, reflectorsTwisted_,
"twisted reflector", tex);
}
if (class_ == o2 || class_ == bo2)
out << (tex ? "/o_2" : "/o2");
else if (class_ == n2 || class_ == bn2)
out << (tex ? "/n_2" : "/n2");
else if (class_ == n3 || class_ == bn3)
out << (tex ? "/n_3" : "/n3");
else if (class_ == n4)
out << (tex ? "/n_4" : "/n4");
return out;
}
std::ostream& NSFSpace::writeCommonStructure(std::ostream& out, bool tex)
const {
if (b_ == 0 && fibres_.empty()) {
// We have a straightforward product (possibly twisted).
writeCommonBase(out, tex);
// The o1/o2/n1/n2/etc specification has already been written in
// writeCommonBase(). Just do the pretty x S1 and get out.
if (fibreReversing())
return out << (tex ? " \\twisted S^1" : " x~ S1");
else
return out << (tex ? " \\times S^1" : " x S1");
}
// We have at least one fibre, even if it's only (1,b).
out << (tex ? "\\mathrm{SFS}\\left(" : "SFS [");
writeCommonBase(out, tex);
out << ':';
if (fibres_.empty()) {
// We have b non-zero.
out << ' ' << NSFSFibre(1, b_);
} else {
out << ' ';
copy(fibres_.begin(), --fibres_.end(),
std::ostream_iterator<NSFSFibre>(out, " "));
NSFSFibre final = fibres_.back();
final.beta += final.alpha * b_;
out << final;
}
return out << (tex ? "\\right)" : "]");
}
std::ostream& NSFSpace::writeCommonName(std::ostream& out, bool tex) const {
// Things we don't deal with just yet.
if (fibreNegating())
return writeStructure(out);
if (reflectors_ || reflectorsTwisted_ || punctures_ || puncturesTwisted_)
return writeStructure(out);
// We're looking at an orientable SFS (with either orientable or
// non-orientable base orbifold), where the base orbifold has no
// punctures or reflector boundaries.
// Take out the lens spaces first.
NLensSpace* lens = isLensSpace();
if (lens) {
if (tex)
lens->writeTeXName(out);
else
lens->writeName(out);
delete lens;
return out;
}
// Pull off the number of fibres we're capable of dealing with.
// At this moment this is four.
if (nFibres_ > 4)
return writeStructure(out);
NSFSFibre fibre[4];
std::copy(fibres_.begin(), fibres_.end(), fibre);
// Note that with three fibres our reduced form will always have
// b >= -1.
// TODO: The four non-orientable flat manifolds are on Orlik p140.
// SFS over the 2-sphere:
if (genus_ == 0 && class_ == o1) {
if (nFibres_ == 4 && fibre[0] == two && fibre[1] == two &&
fibre[2] == two && fibre[3] == two && b_ == -2) {
// [ S2 : (2,1), (2,1), (2,-1), (2,-1) ]
// Orlik, p138, case M2.
return out << (tex ? "K^2/n2 \\twisted S^1" : "KB/n2 x~ S1");
} else if (nFibres_ == 3 && fibre[0] == two &&
gcd(fibre[2].alpha, fibre[2].beta) == 1 && b_ >= -1) {
// [ S2 : (2,1), (...), (...) ]
if (fibre[1] == two) {
// [ S2 : (2,1), (2,1), (a,b) ].
// Orlik, p112, case (ii).
long a = fibre[2].alpha;
long m = fibre[2].beta + a * (b_ + 1);
// Note that a,m >= 0.
if (gcd(m, 2 * a) == 1) {
// S3/Q{4a} x Z{m}.
if (tex)
out << "S^3/Q_{" << (a * 4) << '}';
else
out << "S3/Q" << (a * 4);
if (m > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << m << '}';
else
out << " x Z" << m;
}
return out;
} else if (m % 2 == 0) {
// S3/D{2^{k+2}a} x Z{2m''+1} where m=2^k(2m''+1).
// It seems Orlik is missing a factor of two here?
// He uses m=2^{k+1}(2m''+1).
long odd = m;
long twos = 1;
while (! (odd & 1)) {
odd >>= 1;
twos <<= 1;
}
if (tex)
out << "S^3/D_{" << ((twos << 2) * a) << '}';
else
out << "S3/D" << ((twos << 2) * a);
if (odd > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << odd << '}';
else
out << " x Z" << odd;
}
return out;
}
} else if (fibre[1] == three || fibre[1] == threeB) {
// [ S2 : (2,1), (3,1/2), (a,b) ]
long a = fibre[2].alpha;
if (a == 3) {
// [ S2 : (2,1), (3,x), (3,y) ]
// Orlik, p112, case (iii).
long m = 6 * b_ + 3 + 2 * (fibre[1].beta + fibre[2].beta);
// Note that m >= 1.
if (m % 2 != 0 && m % 3 != 0) {
out << (tex ? "S^3/P_{24}" : "S3/P24");
if (m > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << m << '}';
else
out << " x Z" << m;
}
return out;
} else if (m % 2 != 0) {
long threes = 1;
while (m % 3 == 0) {
m = m / 3;
threes *= 3;
}
// I believe Orlik is missing a factor of three.
// He claims this should be (threes * 8).
if (tex)
out << "S^3/P'_{" << (threes * 24) << '}';
else
out << "S3/P'" << (threes * 24);
if (m > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << m << '}';
else
out << " x Z" << m;
}
return out;
}
} else if (a == 4) {
// [ S2 : (2,1), (3,x), (4,y) ]
// Orlik, p112, case (iv).
long m = 12 * b_ + 6 + 4 * fibre[1].beta +
3 * fibre[2].beta;
// Note that m >= 1.
out << (tex ? "S^3/P_{48}" : "S3/P48");
if (m > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << m << '}';
else
out << " x Z" << m;
}
return out;
} else if (a == 5) {
// [ S2 : (2,1), (3,x), (5,y) ]
// Orlik, p112, case (v).
long m = 30 * b_ + 15 + 10 * fibre[1].beta +
6 * fibre[2].beta;
// Note that m >= 1.
out << (tex ? "S^3/P_{120}" : "S3/P120");
if (m > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << m << '}';
else
out << " x Z" << m;
}
return out;
} else if (a == 6 && fibre[1].beta == 1 &&
fibre[2].beta == 1 && b_ == -1) {
// [ S2 : (2,1), (3,1), (6,-5) ].
// Orlik, p138, case M5.
if (tex)
return out << "T^2 \\times I / \\homtwo{1}{1}{-1}{0}";
else
return out << "T x I / [ 1,1 | -1,0 ]";
}
} else if (fibre[1] == four && fibre[2] == four && b_ == -1) {
// [ S2 : (2,1), (4,1), (4,-3) ].
// Orlik, p138, case M4.
if (tex)
return out << "T^2 \\times I / \\homtwo{0}{-1}{1}{0}";
else
return out << "T x I / [ 0,1 | -1,0 ]";
}
} else if (nFibres_ == 3 && fibre[0] == three && fibre[1] == three
&& fibre[2] == three && b_ == -1) {
// [ S2 : (3,1), (3,1), (3,-2) ]
// Orlik, p138, case M3.
if (tex)
return out << "T^2 \\times I / \\homtwo{0}{-1}{1}{-1}";
else
return out << "T x I / [ -1,1 | -1,0 ]";
}
}
// SFS over the real projective plane:
if (genus_ == 1 && class_ == n2) {
if (nFibres_ == 0) {
// No exceptional fibres.
if (b_ == 0) {
// [ RP2 ]
// Orlik, p113, remark.
return out << (tex ? "\\mathbb{R}P^3 \\# \\mathbb{R}P^3" :
"RP3 # RP3");
} else {
// TODO: [ RP2 : (1,b) ]
// Is this Orlik, p112, case (vi)? What is this?
// ans << "S3/Q" << (4 * (b > 0 ? b : -b));
}
} else if (nFibres_ == 1 && fibre[0].alpha > 1) {
// Just one exceptional fibre.
long a = fibre[0].alpha;
long n = b_ * a + fibre[0].beta;
if (n < 0)
n = -n;
if (n > 1) {
// We have a prism manifold.
// Orlik, p112, case (vi).
if (a % 2 != 0) {
return (tex ?
out << "S^3/Q_{" << (4 * n) <<
"} \\times \\mathbb{Z}_{" << a << "}":
out << "S3/Q" << (4 * n) << " x Z" << a);
} else {
long odd = a;
long twos = 1;
while (! (odd & 1)) {
odd >>= 1;
twos <<= 1;
}
if (tex)
out << "S^3/D_{" << ((twos << 2) * n) << '}';
else
out << "S3/D" << ((twos << 2) * n);
if (odd > 1) {
if (tex)
out << " \\times \\mathbb{Z}_{" << odd << '}';
else
out << " x Z" << odd;
}
return out;
}
}
}
}
return writeStructure(out);
}
} // namespace regina
|