1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "manifold/nsfs.h"
#include "manifold/nsfsaltset.h"
namespace regina {
NSFSAltSet::NSFSAltSet(const NSFSpace* sfs) {
/**
* Note that whenever we add a (1,1) twist, we compensate by setting
* row 2 -> row 2 + row 1 in our conversion matrix.
*/
// Start with the original, reduced to give obstruction constant zero.
data_[0] = new NSFSpace(*sfs);
data_[0]->reduce(false);
long b = data_[0]->obstruction();
if (b)
data_[0]->insertFibre(1, -b);
conversion_[0] = NMatrix2(1, 0, -b, 1);
reflected_[0] = false;
/**
* If the space is M/n2, we can replace it with D:(2,1)(2,-1)
* with fibre and orbifold curves switched. To preserve the
* determinant of the matching matrix we will actually use a
* [0,1,-1,0] switch instead of a [0,1,1,0] switch.
*
* In fact we will use D:(2,1)(2,1) instead, which means:
*
* M_basis = [ 0 1 ] [ 1 0 ] D_basis = [ -1 1 ] D_basis;
* [ -1 0 ] [ -1 1 ] [ -1 0 ]
*
* D_basis = [ 1 0 ] [ 0 -1 ] M_basis = [ 0 -1 ] M_basis.
* [ 1 1 ] [ 1 0 ] [ 1 -1 ]
*/
if (data_[0]->baseClass() == NSFSpace::bn2 &&
data_[0]->baseGenus() == 1 &&
(! data_[0]->baseOrientable()) &&
data_[0]->punctures(false) == 1 &&
data_[0]->punctures(true) == 0 &&
data_[0]->reflectors() == 0 &&
data_[0]->fibreCount() == 0 &&
data_[0]->obstruction() == 0) {
delete data_[0];
data_[0] = new NSFSpace(NSFSpace::bo1, 0 /* genus */,
1 /* punctures */, 0 /* twisted */,
0 /* reflectors */, 0 /* twisted */);
data_[0]->insertFibre(2, 1);
data_[0]->insertFibre(2, 1);
conversion_[0] = NMatrix2(0, -1, 1, -1) * conversion_[0];
}
// Using data_[0] as a foundation, try now for a reflection.
data_[1] = new NSFSpace(*data_[0]);
data_[1]->reflect();
data_[1]->reduce(false);
b = data_[1]->obstruction();
data_[1]->insertFibre(1, -b);
conversion_[1] = NMatrix2(1, 0, -b, -1) * conversion_[0];
reflected_[1] = true;
size_ = 2;
// In the vanilla case, this is all. However, we can occasionally
// do a little more.
// Can we negate all fibres without reflecting?
// Note that (1,2) == (1,0) in this case, so this is only
// interesting if we have an odd number of exceptional fibres.
if (data_[0]->fibreNegating() && (data_[0]->fibreCount() % 2 != 0)) {
// Do it by adding a single (1,1). The subsequent reduce() will
// negate fibres to bring the obstruction constant back down to
// zero, giving the desired effect.
data_[2] = new NSFSpace(*data_[0]);
data_[2]->insertFibre(1, 1);
data_[2]->reduce(false);
b = data_[2]->obstruction();
data_[2]->insertFibre(1, -b);
conversion_[2] = NMatrix2(1, 0, -b + 1, 1) * conversion_[0];
reflected_[2] = false;
// And do it again with an added reflection.
data_[3] = new NSFSpace(*data_[0]);
data_[3]->insertFibre(1, 1);
data_[3]->reflect();
data_[3]->reduce(false);
b = data_[3]->obstruction();
data_[3]->insertFibre(1, -b);
conversion_[3] = NMatrix2(1, 0, -b - 1, -1) * conversion_[0];
reflected_[3] = true;
size_ = 4;
}
}
void NSFSAltSet::deleteAll() {
for (unsigned i = 0; i < size_; i++)
delete data_[i];
}
void NSFSAltSet::deleteAll(NSFSpace* exception) {
for (unsigned i = 0; i < size_; i++)
if (data_[i] != exception)
delete data_[i];
}
void NSFSAltSet::deleteAll(NSFSpace* exception1, NSFSpace* exception2) {
for (unsigned i = 0; i < size_; i++)
if (data_[i] != exception1 && data_[i] != exception2)
delete data_[i];
}
} // namespace regina
|