File: nprimes.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (153 lines) | stat: -rw-r--r-- 6,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "maths/nprimes.h"

namespace regina {

std::vector<NLargeInteger> NPrimes::largePrimes;

NLargeInteger NPrimes::prime(unsigned long which, bool autoGrow) {
    // Can we grab it straight out of the hard-coded seed list?
    if (which < numPrimeSeeds)
        return primeSeedList[which];

    // Do we even have the requested prime stored?
    if (which >= numPrimeSeeds + largePrimes.size()) {
        if (autoGrow)
            growPrimeList(which - numPrimeSeeds - largePrimes.size() + 1);
        else
            return NLargeInteger::zero;
    }

    // Got it.
    return largePrimes[which - numPrimeSeeds];
}

void NPrimes::growPrimeList(unsigned long extras) {
    NLargeInteger lastPrime = (largePrimes.empty() ?
        primeSeedList[numPrimeSeeds - 1] :
        largePrimes[largePrimes.size() - 1]);
    NLargeInteger newPrime;

    while (extras) {
        mpz_nextprime(newPrime.data, lastPrime.data);
        largePrimes.push_back(newPrime);

        lastPrime = newPrime;
        extras--;
    }
}

std::vector<NLargeInteger> NPrimes::primeDecomp(const NLargeInteger& n) {
    std::vector<NLargeInteger> retval;

    // Deal with n=0 first.
    if (n == NLargeInteger::zero) {
        retval.push_back(NLargeInteger::zero);
        return retval;
    }

    NLargeInteger temp(n);
    NLargeInteger r,q;

    // if the number is negative, put -1 as first factor.
    if (temp < NLargeInteger::zero) {
        temp.negate();
        retval.push_back(NLargeInteger(-1));
    }

    // repeatedly divide the number by the smallest primes until no
    // longer divisible.
    // at present the algorithm is only guaranteed to factorize the integer
    // into its prime factors if none of them are larger than the 500th smallest
    // prime.  it always produces a factorization, but after the 500th it uses
    // a probabilistic test to speed things up. This algorithm is at present
    // ad-hoc since the current usage in Regina rarely demands the
    // factorization of even a 4-digit number.

    unsigned long cpi=0; // current prime index.
    unsigned long iterSinceDivision=0; // keeps track of how many iterations
                                       // since the last successful division

    while ( temp != NLargeInteger::one ) {
        // now cpi<size(), check to see if temp % prime(cpi) == 0
        q = temp.divisionAlg(prime(cpi), r); // means temp = q*prime(cpi) + r
        if (r == NLargeInteger::zero) {
            temp=q;
            retval.push_back(prime(cpi));
            iterSinceDivision=0;
            continue;
        }

        cpi++;
        iterSinceDivision++;
        if (iterSinceDivision == 500) // after 500 unsuccessful divisions,
                                      // check to see if it is probably prime.
            if (mpz_probab_prime_p (temp.data, 10) != 0) {
                // temp is likely prime.
                // end the search.
                retval.push_back(temp);
                break;
            }
    }

    return retval; // now it's reasonably fast for small numbers.
               // it tends to bog down on numbers with two or more large
               // prime factors.  the GAP algorithm is better, whatever
               // that is... should consider importing it.
}

std::vector<std::pair<NLargeInteger, unsigned long> >
        NPrimes::primePowerDecomp(const NLargeInteger& n) {
    std::vector<NLargeInteger> list1(primeDecomp(n));
    std::vector< std::pair<NLargeInteger, unsigned long> > retlist;

    // go through list1, record number of each prime, put in retlist.
    if (! list1.empty()) {
        NLargeInteger cp(list1.front()); // current prime
        unsigned long cc(1); // current count
        std::vector<NLargeInteger>::const_iterator it = list1.begin();
        for (++it; it != list1.end(); ++it) {
            if (*it == cp)
                cc++;
            else {
                // a new prime is coming up.
                retlist.push_back(std::make_pair( cp, cc ) );
                cp = *it;
                cc = 1;
            }
        }
        retlist.push_back(std::make_pair( cp, cc ) );
    }

    return retlist;
}

} // namespace regina