1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <algorithm>
#include <functional>
#include "maths/numbertheory.h"
#include "utilities/stlutils.h"
namespace regina {
long reducedMod(long k, long modBase) {
long ans = k % modBase;
if (ans < 0) {
if ((ans + modBase) <= (-ans))
return (ans + modBase);
} else if (-(ans - modBase) < ans)
return (ans - modBase);
return ans;
}
unsigned long gcd(unsigned long a, unsigned long b) {
long tmp;
while (a != b && b != 0) {
tmp = a;
a = b;
b = tmp % b;
}
return a;
}
namespace {
long gcdWithCoeffsInternal(long a, long b, long& u, long& v) {
// This routine assumes a and b to be non-negative.
long a_orig = a;
long b_orig = b;
u = 1;
v = 0;
long uu = 0;
long vv = 1;
long tmp1, tmp2, q;
while (a != b && b != 0) {
// At each stage:
// u*(a_orig) + v*(b_orig) = a_curr;
// uu*(a_orig) + vv*(b_orig) = b_curr.
tmp1 = u; tmp2 = v;
u = uu; v = vv;
q = a / b;
uu = tmp1 - (q * uu); vv = tmp2 - (q * vv);
tmp1 = a;
a = b;
b = tmp1 % b;
}
// a is now our gcd.
// Put u and v in the correct range.
if (b_orig == 0)
return a;
// We are allowed to add (b_orig/d, -a_orig/d) to (u,v).
a_orig = -(a_orig / a);
b_orig = b_orig / a;
// Now we are allowed to add (b_orig, a_orig), where b_orig >= 0.
// Add enough copies to put u between 1 and b_orig inclusive.
long k;
if (u > 0)
k = -((u-1) / b_orig);
else
k = (b_orig-u) / b_orig;
if (k) {
u += k * b_orig;
v += k * a_orig;
}
return a;
}
}
long gcdWithCoeffs(long a, long b, long& u, long& v) {
long signA = (a > 0 ? 1 : a == 0 ? 0 : -1);
long signB = (b > 0 ? 1 : b == 0 ? 0 : -1);
long ans = gcdWithCoeffsInternal(a >= 0 ? a : -a,
b >= 0 ? b : -b, u, v);
u *= signA;
v *= signB;
return ans;
}
unsigned long modularInverse(unsigned long n, unsigned long k) {
if (n == 1)
return 0;
long u, v;
gcdWithCoeffs(n, k % n, u, v);
// GCD should equal 1, so u*n + k*v = 1.
// Inverse is v; note that -n < v <= 0.
// Since n >= 2 now and (n,k) = 1, we know v != 0.
return v + n;
}
namespace {
/**
* Finds the smallest prime factor of the given odd integer.
* You may specify a known lower bound for this smallest prime factor.
* If the given integer is prime, 0 is returned.
*
* \pre \a n is odd.
* \pre The smallest prime factor of \a n is known to
* be at least as large as (and possibly equal to) \a lowerBound.
* \pre \a lowerBound is odd.
*
* @param n the integer whose smallest prime factor we wish to find.
* @param lowerBound a known lower bound for this smallest prime factor.
* @return the smallest prime factor of \a n, or 0 if \a n is prime.
*/
unsigned long smallestPrimeFactor(unsigned long n,
unsigned long lowerBound = 1) {
while (lowerBound * lowerBound <= n) {
if (n % lowerBound == 0)
return lowerBound;
lowerBound += 2;
}
return 0;
}
}
void factorise(unsigned long n, std::list<unsigned long>& factors) {
// n > 0 is a precondition, but the effects are too unpleasant if
// it's broken (infinite memory consumption).
if (n == 0)
return;
// First take out all factors of 2.
while (n % 2 == 0) {
n = n / 2;
factors.push_back(2);
}
// Run through finding smallest factors.
unsigned long factor = 3;
while ((factor = smallestPrimeFactor(n, factor))) {
factors.push_back(factor);
n = n / factor;
}
// Anything left is prime.
if (n > 1)
factors.push_back(n);
}
void primesUpTo(const NLargeInteger& roof, std::list<NLargeInteger>& primes) {
// First check 2.
if (roof < 2)
return;
primes.push_back(NLargeInteger(2));
// Run through the rest.
NLargeInteger current(3);
while (current <= roof) {
// Is current prime?
if (find_if(primes.begin(), primes.end(), regina::stl::compose1(
bind2nd(std::equal_to<NLargeInteger>(), NLargeInteger::zero),
bind1st(std::modulus<NLargeInteger>(), current))) ==
primes.end())
primes.push_back(current);
current += 2;
}
}
} // namespace regina
|