1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
|
/*
* complex.c
*
* This file provides the standard complex arithmetic functions:
*
* Complex complex_minus (Complex z0, Complex z1),
* complex_plus (Complex z0, Complex z1),
* complex_mult (Complex z0, Complex z1),
* complex_div (Complex z0, Complex z1),
* complex_sqrt (Complex z),
* complex_conjugate (Complex z),
* complex_negate (Complex z),
* complex_real_mult (double r, Complex z),
* complex_exp (Complex z),
* complex_log (Complex z, double approx_arg);
* double complex_modulus (Complex z);
* double complex_modulus_squared (Complex z);
* Boolean complex_nonzero (Complex z);
* Boolean complex_infinite (Complex z);
*/
#include "kernel.h"
Complex Zero = { 0.0, 0.0};
Complex One = { 1.0, 0.0};
Complex Two = { 2.0, 0.0};
Complex Four = { 4.0, 0.0};
Complex MinusOne = {-1.0, 0.0};
Complex I = { 0.0, 1.0};
Complex TwoPiI = { 0.0, TWO_PI};
Complex Infinity = {1e34, 0.0};
Complex complex_plus(
Complex z0,
Complex z1)
{
Complex sum;
sum.real = z0.real + z1.real;
sum.imag = z0.imag + z1.imag;
return sum;
}
Complex complex_minus(
Complex z0,
Complex z1)
{
Complex diff;
diff.real = z0.real - z1.real;
diff.imag = z0.imag - z1.imag;
return diff;
}
Complex complex_div(
Complex z0,
Complex z1)
{
double mod_sq;
Complex quotient;
mod_sq = z1.real * z1.real + z1.imag * z1.imag;
if (mod_sq == 0.0)
{
if (z0.real != 0.0 || z0.imag != 0.0)
return Infinity;
else
uFatalError("complex_div", "complex");
}
quotient.real = (z0.real * z1.real + z0.imag * z1.imag)/mod_sq;
quotient.imag = (z0.imag * z1.real - z0.real * z1.imag)/mod_sq;
return quotient;
}
Complex complex_mult(
Complex z0,
Complex z1)
{
Complex product;
product.real = z0.real * z1.real - z0.imag * z1.imag;
product.imag = z0.real * z1.imag + z0.imag * z1.real;
return product;
}
Complex complex_sqrt(
Complex z)
{
double mod,
arg;
Complex root;
mod = sqrt(complex_modulus(z)); /* no need for safe_sqrt() */
if (mod == 0.0)
return Zero;
arg = 0.5 * atan2(z.imag, z.real);
root.real = mod * cos(arg);
root.imag = mod * sin(arg);
return root;
}
Complex complex_conjugate(
Complex z)
{
z.imag = - z.imag;
return z;
}
Complex complex_negate(
Complex z)
{
z.real = - z.real;
z.imag = - z.imag;
return z;
}
Complex complex_real_mult(
double r,
Complex z)
{
Complex multiple;
multiple.real = r * z.real;
multiple.imag = r * z.imag;
return multiple;
}
Complex complex_exp(
Complex z)
{
double modulus;
Complex result;
modulus = exp(z.real);
result.real = modulus * cos(z.imag);
result.imag = modulus * sin(z.imag);
return result;
}
Complex complex_log(
Complex z,
double approx_arg)
{
Complex result;
if (z.real == 0.0 && z.imag == 0.0)
{
uAcknowledge("log(0 + 0i) encountered");
result.real = - DBL_MAX;
result.imag = approx_arg;
return result;
}
result.real = 0.5 * log(z.real * z.real + z.imag * z.imag);
result.imag = atan2(z.imag, z.real);
while (result.imag - approx_arg > PI)
result.imag -= TWO_PI;
while (approx_arg - result.imag > PI)
result.imag += TWO_PI;
return result;
}
double complex_modulus(
Complex z)
{
return sqrt(z.real * z.real + z.imag * z.imag); /* no need for safe_sqrt() */
}
double complex_modulus_squared(
Complex z)
{
return (z.real * z.real + z.imag * z.imag);
}
Boolean complex_nonzero(
Complex z)
{
return (z.real || z.imag);
}
Boolean complex_infinite(
Complex z)
{
return (z.real == Infinity.real && z.imag == Infinity.imag);
}
|