File: complex.c

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (209 lines) | stat: -rw-r--r-- 3,554 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/*
 *	complex.c
 *
 *	This file provides the standard complex arithmetic functions:
 *
 *	Complex	complex_minus			(Complex z0, Complex z1),
 *			complex_plus			(Complex z0, Complex z1),
 *			complex_mult			(Complex z0, Complex z1),
 *			complex_div				(Complex z0, Complex z1),
 *			complex_sqrt			(Complex z),
 *			complex_conjugate		(Complex z),
 *			complex_negate			(Complex z),
 *			complex_real_mult		(double r, Complex z),
 *			complex_exp				(Complex z),
 *			complex_log				(Complex z, double approx_arg);
 *	double	complex_modulus			(Complex z);
 *	double	complex_modulus_squared	(Complex z);
 *	Boolean	complex_nonzero			(Complex z);
 *	Boolean	complex_infinite		(Complex z);
 */

#include "kernel.h"

Complex Zero		= { 0.0, 0.0};
Complex One			= { 1.0, 0.0};
Complex Two			= { 2.0, 0.0};
Complex Four		= { 4.0, 0.0};
Complex MinusOne	= {-1.0, 0.0};
Complex	I			= { 0.0, 1.0};
Complex TwoPiI		= { 0.0, TWO_PI};
Complex	Infinity	= {1e34, 0.0};

Complex complex_plus(
	Complex z0,
	Complex z1)
{
	Complex sum;

	sum.real = z0.real + z1.real;
	sum.imag = z0.imag + z1.imag;

	return sum;
}


Complex complex_minus(
	Complex z0,
	Complex z1)
{
	Complex diff;

	diff.real = z0.real - z1.real;
	diff.imag = z0.imag - z1.imag;

	return diff;
}


Complex complex_div(
	Complex z0,
	Complex z1)
{
	double	mod_sq;
	Complex	quotient;

	mod_sq =  z1.real * z1.real  +  z1.imag * z1.imag;
	if (mod_sq == 0.0)
	{
		if (z0.real != 0.0 || z0.imag != 0.0)
			return Infinity;
		else
			uFatalError("complex_div", "complex");
	}
	quotient.real = (z0.real * z1.real  +  z0.imag * z1.imag)/mod_sq;
	quotient.imag = (z0.imag * z1.real  -  z0.real * z1.imag)/mod_sq;

	return quotient;
}


Complex complex_mult(
	Complex z0,
	Complex z1)
{
	Complex product;

	product.real = z0.real * z1.real  -  z0.imag * z1.imag;
	product.imag = z0.real * z1.imag  +  z0.imag * z1.real;

	return product;
}


Complex complex_sqrt(
	Complex z)
{
	double	mod,
			arg;
	Complex	root;

	mod = sqrt(complex_modulus(z));	/* no need for safe_sqrt() */
	if (mod == 0.0)
		return Zero;
	arg = 0.5 * atan2(z.imag, z.real);
	root.real = mod * cos(arg);
	root.imag = mod * sin(arg);

	return root;
}


Complex complex_conjugate(
	Complex z)
{
	z.imag = - z.imag;

	return z;
}


Complex complex_negate(
	Complex z)
{
	z.real = - z.real;
	z.imag = - z.imag;

	return z;
}


Complex complex_real_mult(
	double	r,
	Complex z)
{
	Complex	multiple;

	multiple.real = r * z.real;
	multiple.imag = r * z.imag;

	return multiple;
}


Complex complex_exp(
	Complex	z)
{
	double	modulus;
	Complex	result;

	modulus = exp(z.real);
	result.real = modulus * cos(z.imag);
	result.imag = modulus * sin(z.imag);

	return result;
}


Complex complex_log(
	Complex	z,
	double	approx_arg)
{
	Complex	result;

	if (z.real == 0.0  &&  z.imag == 0.0)
	{
		uAcknowledge("log(0 + 0i) encountered");
		result.real = - DBL_MAX;
		result.imag = approx_arg;
		return result;
	}

	result.real = 0.5 * log(z.real * z.real + z.imag * z.imag);

	result.imag = atan2(z.imag, z.real);
	while (result.imag - approx_arg > PI)
		result.imag -= TWO_PI;
	while (approx_arg - result.imag > PI)
		result.imag += TWO_PI;

	return result;
}


double complex_modulus(
	Complex z)
{
	return sqrt(z.real * z.real + z.imag * z.imag);	/* no need for safe_sqrt() */
}


double complex_modulus_squared(
	Complex z)
{
	return (z.real * z.real + z.imag * z.imag);
}


Boolean complex_nonzero(
	Complex z)
{
	return (z.real || z.imag);
}


Boolean complex_infinite(
	Complex z)
{
	return (z.real == Infinity.real && z.imag == Infinity.imag);
}