File: nblockedsfsloop.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (230 lines) | stat: -rw-r--r-- 8,596 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "manifold/ngraphloop.h"
#include "manifold/nsfs.h"
#include "subcomplex/nblockedsfsloop.h"
#include "subcomplex/nlayering.h"
#include "subcomplex/nsatblockstarter.h"
#include "subcomplex/nsatregion.h"

namespace regina {

/**
 * A subclass of NSatBlockStarterSearcher that, upon finding a starter
 * block, attempts to flesh this out to an entire saturated region with
 * two identified torus boundaries, as described by the NBlockedSFSLoop
 * class.
 */
struct NBlockedSFSLoopSearcher : public NSatBlockStarterSearcher {
    NSatRegion* region;
        /**< The bounded saturated region, if the entire NBlockedSFSLoop
             structure has been successfully found; otherwise, 0 if we are
             still searching. */
    NMatrix2 matchingReln;
        /**< The matrix describing how the two boundary annuli of the
             saturated region are joined together.  This matrix expresses
             the fibre/base curves on one boundary annulus in terms of the
             fibre/base curves on the other, as described by
             NGraphLoop::matchingReln(). */

    /**
     * Creates a new searcher whose \a region pointer is null.
     */
    NBlockedSFSLoopSearcher() : region(0) {
    }

    protected:
        bool useStarterBlock(NSatBlock* starter);
};

NBlockedSFSLoop::~NBlockedSFSLoop() {
    if (region_)
        delete region_;
}

NManifold* NBlockedSFSLoop::getManifold() const {
    NSFSpace* sfs = region_->createSFS(2, false);
    if (! sfs)
        return 0;

    sfs->reduce(false);

    return new NGraphLoop(sfs, matchingReln_);
}

std::ostream& NBlockedSFSLoop::writeName(std::ostream& out) const {
    out << "Blocked SFS Loop [";
    region_->writeBlockAbbrs(out, false);
    return out << ']';
}

std::ostream& NBlockedSFSLoop::writeTeXName(std::ostream& out) const {
    out << "\\mathrm{BSFS\\_Loop}\\left[";
    region_->writeBlockAbbrs(out, true);
    return out << "\\right]";
}

void NBlockedSFSLoop::writeTextLong(std::ostream& out) const {
    out << "Blocked SFS Loop, matching relation " << matchingReln_ << '\n';
    region_->writeDetail(out, "Internal region");
}

NBlockedSFSLoop* NBlockedSFSLoop::isBlockedSFSLoop(NTriangulation* tri) {
    // Basic property checks.
    if (! tri->isClosed())
        return 0;
    if (tri->getNumberOfComponents() > 1)
        return 0;

    // Watch out for twisted block boundaries that are incompatible with
    // neighbouring blocks!  Also watch for saturated tori being joined
    // to saturated Klein bottles.  Any of these issues will result in
    // edges joined to themselves in reverse.
    if (! tri->isValid())
        return 0;

    // Hunt for a starting block.
    NBlockedSFSLoopSearcher searcher;
    searcher.findStarterBlocks(tri);

    // Any luck?
    if (searcher.region) {
        // The expansion and self-adjacency worked, and the triangulation
        // is known to be closed and connected.
        // This means we've got one!
        return new NBlockedSFSLoop(searcher.region, searcher.matchingReln);
    }

    // Nope.
    return 0;
}

bool NBlockedSFSLoopSearcher::useStarterBlock(NSatBlock* starter) {
    // The region pointer should be null, but just in case...
    if (region) {
        delete starter;
        return false;
    }

    // Flesh out the triangulation as far as we can.  We're aiming for
    // precisely two boundary annuli remaining.
    // Note that the starter block will now be owned by region.
    region = new NSatRegion(starter);
    region->expand(usedTets);

    if (region->numberOfBoundaryAnnuli() != 2) {
        delete region;
        region = 0;
        return true;
    }

    NSatBlock* bdryBlock[2];
    unsigned bdryAnnulus[2];
    bool bdryRefVert[2], bdryRefHoriz[2];
    region->boundaryAnnulus(0, bdryBlock[0], bdryAnnulus[0],
        bdryRefVert[0], bdryRefHoriz[0]);
    region->boundaryAnnulus(1, bdryBlock[1], bdryAnnulus[1],
        bdryRefVert[1], bdryRefHoriz[1]);

    // We either want two disjoint one-annulus torus boundaries, or else a
    // single two-annulus boundary that is pinched to turn each annulus into
    // a two-sided torus.  The following test will handle all cases.  We
    // don't worry about the degenerate case of fibres mapping to fibres
    // through the layering in the pinched case, since this will fail
    // our test anyway (either boundaries do not form tori, or they are
    // not two-sided).
    NSatAnnulus bdry0 = bdryBlock[0]->annulus(bdryAnnulus[0]);
    NSatAnnulus bdry1 = bdryBlock[1]->annulus(bdryAnnulus[1]);

    if (! (bdry0.isTwoSidedTorus() && bdry1.isTwoSidedTorus())) {
        delete region;
        region = 0;
        return true;
    }

    // Look for a layering on the first boundary annulus.
    // Extend the layering one tetrahedron at a time, to make sure we
    // don't loop back onto ourselves.
    NLayering layering(bdry0.tet[0], bdry0.roles[0],
        bdry0.tet[1], bdry0.roles[1]);

    NSatAnnulus layerTop;
    NMatrix2 layerToBdry1;
    while (true) {
        layerTop.tet[0] = layering.getNewBoundaryTet(0);
        layerTop.tet[1] = layering.getNewBoundaryTet(1);
        layerTop.roles[0] = layering.getNewBoundaryRoles(0);
        layerTop.roles[1] = layering.getNewBoundaryRoles(1);

        // Have we reached the second boundary?
        if (bdry1.isJoined(layerTop, layerToBdry1))
            break;

        // We haven't joined up yet.  Either extend or die.
        if (! layering.extendOne()) {
            // The layering dried up and we didn't make it.
            delete region;
            region = 0;
            return true;
        }

        if (usedTets.find(layering.getNewBoundaryTet(0)) !=
                usedTets.end() ||
                usedTets.find(layering.getNewBoundaryTet(1)) !=
                usedTets.end()) {
            // Gone too far -- we've looped back upon ourselves.
            delete region;
            region = 0;
            return true;
        }

        usedTets.insert(layering.getNewBoundaryTet(0));
        usedTets.insert(layering.getNewBoundaryTet(1));
    }

    // This is it!  Build the matching matrix and stop searching.

    // First find mappings from the fibre/base curves (fi, oi) to
    // annulus #i edges (first face: 01, first face: 02).
    // Note that each of these matrices is self-inverse.
    NMatrix2 curves0ToAnnulus0(bdryRefVert[0] ? 1 : -1, 0, 0,
        bdryRefHoriz[0] ? -1 : 1);
    NMatrix2 curves1ToAnnulus1(bdryRefVert[1] ? 1 : -1, 0, 0,
        bdryRefHoriz[1] ? -1 : 1);

    // Put it all together.
    // Remember that curves1ToAnnulus1 is self-inverse.
    matchingReln = curves1ToAnnulus1 * layerToBdry1 *
        layering.boundaryReln() * curves0ToAnnulus0;

    return false;
}

} // namespace regina