1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "manifold/ngraphloop.h"
#include "manifold/nsfs.h"
#include "subcomplex/nblockedsfsloop.h"
#include "subcomplex/nlayering.h"
#include "subcomplex/nsatblockstarter.h"
#include "subcomplex/nsatregion.h"
namespace regina {
/**
* A subclass of NSatBlockStarterSearcher that, upon finding a starter
* block, attempts to flesh this out to an entire saturated region with
* two identified torus boundaries, as described by the NBlockedSFSLoop
* class.
*/
struct NBlockedSFSLoopSearcher : public NSatBlockStarterSearcher {
NSatRegion* region;
/**< The bounded saturated region, if the entire NBlockedSFSLoop
structure has been successfully found; otherwise, 0 if we are
still searching. */
NMatrix2 matchingReln;
/**< The matrix describing how the two boundary annuli of the
saturated region are joined together. This matrix expresses
the fibre/base curves on one boundary annulus in terms of the
fibre/base curves on the other, as described by
NGraphLoop::matchingReln(). */
/**
* Creates a new searcher whose \a region pointer is null.
*/
NBlockedSFSLoopSearcher() : region(0) {
}
protected:
bool useStarterBlock(NSatBlock* starter);
};
NBlockedSFSLoop::~NBlockedSFSLoop() {
if (region_)
delete region_;
}
NManifold* NBlockedSFSLoop::getManifold() const {
NSFSpace* sfs = region_->createSFS(2, false);
if (! sfs)
return 0;
sfs->reduce(false);
return new NGraphLoop(sfs, matchingReln_);
}
std::ostream& NBlockedSFSLoop::writeName(std::ostream& out) const {
out << "Blocked SFS Loop [";
region_->writeBlockAbbrs(out, false);
return out << ']';
}
std::ostream& NBlockedSFSLoop::writeTeXName(std::ostream& out) const {
out << "\\mathrm{BSFS\\_Loop}\\left[";
region_->writeBlockAbbrs(out, true);
return out << "\\right]";
}
void NBlockedSFSLoop::writeTextLong(std::ostream& out) const {
out << "Blocked SFS Loop, matching relation " << matchingReln_ << '\n';
region_->writeDetail(out, "Internal region");
}
NBlockedSFSLoop* NBlockedSFSLoop::isBlockedSFSLoop(NTriangulation* tri) {
// Basic property checks.
if (! tri->isClosed())
return 0;
if (tri->getNumberOfComponents() > 1)
return 0;
// Watch out for twisted block boundaries that are incompatible with
// neighbouring blocks! Also watch for saturated tori being joined
// to saturated Klein bottles. Any of these issues will result in
// edges joined to themselves in reverse.
if (! tri->isValid())
return 0;
// Hunt for a starting block.
NBlockedSFSLoopSearcher searcher;
searcher.findStarterBlocks(tri);
// Any luck?
if (searcher.region) {
// The expansion and self-adjacency worked, and the triangulation
// is known to be closed and connected.
// This means we've got one!
return new NBlockedSFSLoop(searcher.region, searcher.matchingReln);
}
// Nope.
return 0;
}
bool NBlockedSFSLoopSearcher::useStarterBlock(NSatBlock* starter) {
// The region pointer should be null, but just in case...
if (region) {
delete starter;
return false;
}
// Flesh out the triangulation as far as we can. We're aiming for
// precisely two boundary annuli remaining.
// Note that the starter block will now be owned by region.
region = new NSatRegion(starter);
region->expand(usedTets);
if (region->numberOfBoundaryAnnuli() != 2) {
delete region;
region = 0;
return true;
}
NSatBlock* bdryBlock[2];
unsigned bdryAnnulus[2];
bool bdryRefVert[2], bdryRefHoriz[2];
region->boundaryAnnulus(0, bdryBlock[0], bdryAnnulus[0],
bdryRefVert[0], bdryRefHoriz[0]);
region->boundaryAnnulus(1, bdryBlock[1], bdryAnnulus[1],
bdryRefVert[1], bdryRefHoriz[1]);
// We either want two disjoint one-annulus torus boundaries, or else a
// single two-annulus boundary that is pinched to turn each annulus into
// a two-sided torus. The following test will handle all cases. We
// don't worry about the degenerate case of fibres mapping to fibres
// through the layering in the pinched case, since this will fail
// our test anyway (either boundaries do not form tori, or they are
// not two-sided).
NSatAnnulus bdry0 = bdryBlock[0]->annulus(bdryAnnulus[0]);
NSatAnnulus bdry1 = bdryBlock[1]->annulus(bdryAnnulus[1]);
if (! (bdry0.isTwoSidedTorus() && bdry1.isTwoSidedTorus())) {
delete region;
region = 0;
return true;
}
// Look for a layering on the first boundary annulus.
// Extend the layering one tetrahedron at a time, to make sure we
// don't loop back onto ourselves.
NLayering layering(bdry0.tet[0], bdry0.roles[0],
bdry0.tet[1], bdry0.roles[1]);
NSatAnnulus layerTop;
NMatrix2 layerToBdry1;
while (true) {
layerTop.tet[0] = layering.getNewBoundaryTet(0);
layerTop.tet[1] = layering.getNewBoundaryTet(1);
layerTop.roles[0] = layering.getNewBoundaryRoles(0);
layerTop.roles[1] = layering.getNewBoundaryRoles(1);
// Have we reached the second boundary?
if (bdry1.isJoined(layerTop, layerToBdry1))
break;
// We haven't joined up yet. Either extend or die.
if (! layering.extendOne()) {
// The layering dried up and we didn't make it.
delete region;
region = 0;
return true;
}
if (usedTets.find(layering.getNewBoundaryTet(0)) !=
usedTets.end() ||
usedTets.find(layering.getNewBoundaryTet(1)) !=
usedTets.end()) {
// Gone too far -- we've looped back upon ourselves.
delete region;
region = 0;
return true;
}
usedTets.insert(layering.getNewBoundaryTet(0));
usedTets.insert(layering.getNewBoundaryTet(1));
}
// This is it! Build the matching matrix and stop searching.
// First find mappings from the fibre/base curves (fi, oi) to
// annulus #i edges (first face: 01, first face: 02).
// Note that each of these matrices is self-inverse.
NMatrix2 curves0ToAnnulus0(bdryRefVert[0] ? 1 : -1, 0, 0,
bdryRefHoriz[0] ? -1 : 1);
NMatrix2 curves1ToAnnulus1(bdryRefVert[1] ? 1 : -1, 0, 0,
bdryRefHoriz[1] ? -1 : 1);
// Put it all together.
// Remember that curves1ToAnnulus1 is self-inverse.
matchingReln = curves1ToAnnulus1 * layerToBdry1 *
layering.boundaryReln() * curves0ToAnnulus0;
return false;
}
} // namespace regina
|