File: nlayeredloop.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (218 lines) | stat: -rw-r--r-- 8,141 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "algebra/nabeliangroup.h"
#include "manifold/nlensspace.h"
#include "manifold/nsfs.h"
#include "triangulation/nedge.h"
#include "triangulation/ncomponent.h"
#include "triangulation/ntetrahedron.h"
#include "subcomplex/nlayeredloop.h"

namespace regina {

NLayeredLoop* NLayeredLoop::clone() const {
    NLayeredLoop* ans = new NLayeredLoop();
    ans->length = length;
    ans->hinge[0] = hinge[0];
    ans->hinge[1] = hinge[1];
    return ans;
}

NManifold* NLayeredLoop::getManifold() const {
    if (hinge[1]) {
        // Not twisted.
        return new NLensSpace(length, 1);
    } else {
        // Twisted.
        NSFSpace* ans = new NSFSpace();
        ans->insertFibre(2, -1);
        ans->insertFibre(2, 1);
        ans->insertFibre(length, 1);
        ans->reduce();
        return ans;
    }
}

NLayeredLoop* NLayeredLoop::isLayeredLoop(const NComponent* comp) {
    // Basic property check.
    if ((! comp->isClosed()) || (! comp->isOrientable()))
        return 0;

    unsigned long nTet = comp->getNumberOfTetrahedra();
    if (nTet == 0)
        return 0;
    unsigned long nVertices = comp->getNumberOfVertices();
    if (nVertices > 2)
        return 0;
    bool twisted = (nVertices == 1);

    // We have at least 1 tetrahedron and precisely 1 or 2 vertices.
    // The component is closed and orientable (and connected, since it's
    // a component).

    // Pick our base tetrahedron.
    NTetrahedron* base = comp->getTetrahedron(0);

    NTetrahedron* tet = base;
    NTetrahedron* next;
    int baseTop0, baseTop1, baseBottom0, baseBottom1;
    int top0, top1, bottom0, bottom1;
    int adjTop0 = 0, adjTop1 = 0, adjBottom0 = 0, adjBottom1 = 0;
    int hinge0, hinge1;
    NPerm p;
    bool ok;

    // Declare 0 to be a top face; find its partner.
    baseTop0 = 0;
    next = base->getAdjacentTetrahedron(0);
    for (baseTop1 = 1; baseTop1 < 4; baseTop1++) {
        if (base->getAdjacentTetrahedron(baseTop1) != next)
            continue;

        // Find the vertex joined to baseTop0 by a hinge.
        for (baseBottom0 = 1; baseBottom0 < 4; baseBottom0++) {
            if (baseBottom0 == baseTop1)
                continue;
            baseBottom1 = 6 - baseBottom0 - baseTop0 - baseTop1;

            // Some basic property checks.
            if (base->getAdjacentTetrahedron(baseBottom0) !=
                    base->getAdjacentTetrahedron(baseBottom1))
                continue;

            hinge0 = edgeNumber[baseTop0][baseBottom0];
            hinge1 = edgeNumber[baseTop1][baseBottom1];
            if (twisted) {
                if (base->getEdge(hinge0) != base->getEdge(hinge1))
                    continue;
                if (base->getEdge(hinge0)->getNumberOfEmbeddings() != 2 * nTet)
                    continue;
            } else {
                if (base->getEdge(hinge0)->getNumberOfEmbeddings() != nTet)
                    continue;
                if (base->getEdge(hinge1)->getNumberOfEmbeddings() != nTet)
                    continue;
            }

            top0 = baseTop0; top1 = baseTop1;
            bottom0 = baseBottom0; bottom1 = baseBottom1;

            // Follow the gluings up.
            ok = true;
            while (true) {
                // Already set: tet, next, topi, bottomi.
                
                // Check that both steps up lead to the same tetrahedron.
                // Note that this check has already been done for the first
                // iteration of this loop; never mind, no big loss.
                if (tet->getAdjacentTetrahedron(top0) !=
                        tet->getAdjacentTetrahedron(top1)) {
                    ok = false;
                    break;
                }

                // Check that the corresponding gluings are correct.
                p = tet->getAdjacentTetrahedronGluing(top0);
                adjTop0 = p[bottom0];
                adjTop1 = p[top1];
                adjBottom0 = p[top0];
                adjBottom1 = p[bottom1];

                p = tet->getAdjacentTetrahedronGluing(top1);
                // Note that only three of the four comparisons are needed.
                if (adjTop0 != p[top0] || adjTop1 != p[bottom1] ||
                        adjBottom0 != p[bottom0]) {
                    ok = false;
                    break;
                }

                // If we've finished the loop, exit at this point so we
                // can check that it all glued up correctly.
                if (next == base)
                    break;

                // We haven't finished the loop, so the next
                // tetrahedron should be different from this one.
                if (next == tet) {
                    ok = false;
                    break;
                }

                // Move to the next tetrahedron.
                top0 = adjTop0; top1 = adjTop1;
                bottom0 = adjBottom0; bottom1 = adjBottom1;
                tet = next;
                next = tet->getAdjacentTetrahedron(top0);
            }

            if (ok) {
                // Make sure the final gluing wraps everything up
                // correctly.
                if (twisted) {
                    if (adjTop0 != baseTop1 || adjTop1 != baseTop0 ||
                            adjBottom0 != baseBottom1)
                        continue;
                } else {
                    if (adjTop0 != baseTop0 || adjTop1 != baseTop1 ||
                            adjBottom0 != baseBottom0)
                        continue;
                }

                // We have a solution!
                NLayeredLoop* ans = new NLayeredLoop();
                ans->length = nTet;
                ans->hinge[0] = base->getEdge(hinge0);
                ans->hinge[1] = (twisted ? 0 : base->getEdge(hinge1));
                return ans;
            }
        }
    }

    // Nothing found.
    return 0;
}

NAbelianGroup* NLayeredLoop::getHomologyH1() const {
    NAbelianGroup* ans = new NAbelianGroup();
    if (hinge[1]) {
        // Untwisted.
        if (length > 1)
            ans->addTorsionElement(length);
    } else {
        // Twisted.
        if (length % 2 == 0)
            ans->addTorsionElement(2, 2);
        else
            ans->addTorsionElement(4);
    }
    return ans;
}

} // namespace regina