1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "manifold/ntorusbundle.h"
#include "subcomplex/nlayeredsurfacebundle.h"
#include "subcomplex/nlayering.h"
#include "subcomplex/ntxicore.h"
#include "triangulation/nisomorphism.h"
#include "triangulation/ntriangulation.h"
namespace regina {
namespace {
const NTxIDiagonalCore core_T_6_1(6, 1);
const NTxIDiagonalCore core_T_7_1(7, 1);
const NTxIDiagonalCore core_T_8_1(8, 1);
const NTxIDiagonalCore core_T_8_2(8, 2);
const NTxIDiagonalCore core_T_9_1(9, 1);
const NTxIDiagonalCore core_T_9_2(9, 2);
const NTxIDiagonalCore core_T_10_1(10, 1);
const NTxIDiagonalCore core_T_10_2(10, 2);
const NTxIDiagonalCore core_T_10_3(10, 3);
const NTxIParallelCore core_T_p;
}
NLayeredTorusBundle::~NLayeredTorusBundle() {
delete coreIso_;
}
NLayeredTorusBundle* NLayeredTorusBundle::isLayeredTorusBundle(
NTriangulation* tri) {
// Basic property checks.
if (! tri->isClosed())
return 0;
if (tri->getNumberOfVertices() > 1)
return 0;
if (tri->getNumberOfComponents() > 1)
return 0;
if (tri->getNumberOfTetrahedra() < 6)
return 0;
// We have a 1-vertex 1-component closed triangulation with at least
// six tetrahedra.
// Hunt for the core thin torus bundle.
NLayeredTorusBundle* ans;
if ((ans = hunt(tri, core_T_6_1)))
return ans;
if ((ans = hunt(tri, core_T_7_1)))
return ans;
if ((ans = hunt(tri, core_T_8_1)))
return ans;
if ((ans = hunt(tri, core_T_8_2)))
return ans;
if ((ans = hunt(tri, core_T_9_1)))
return ans;
if ((ans = hunt(tri, core_T_9_2)))
return ans;
if ((ans = hunt(tri, core_T_10_1)))
return ans;
if ((ans = hunt(tri, core_T_10_2)))
return ans;
if ((ans = hunt(tri, core_T_10_3)))
return ans;
if ((ans = hunt(tri, core_T_p)))
return ans;
return 0;
}
NLayeredTorusBundle* NLayeredTorusBundle::hunt(NTriangulation* tri,
const NTxICore& core) {
std::list<NIsomorphism*> isos;
if (! core.core().findAllSubcomplexesIn(*tri, isos))
return 0;
// Run through each isomorphism and look for the corresponding layering.
NMatrix2 matchReln;
for (std::list<NIsomorphism*>::const_iterator it = isos.begin();
it != isos.end(); it++) {
// Apply the layering to the lower boundary and see if it
// matches nicely with the upper.
NLayering layering(
tri->getTetrahedron((*it)->tetImage(core.bdryTet(1,0))),
(*it)->facePerm(core.bdryTet(1,0)) * core.bdryRoles(1,0),
tri->getTetrahedron((*it)->tetImage(core.bdryTet(1,1))),
(*it)->facePerm(core.bdryTet(1,1)) * core.bdryRoles(1,1));
layering.extend();
if (layering.matchesTop(
tri->getTetrahedron((*it)->tetImage(core.bdryTet(0,0))),
(*it)->facePerm(core.bdryTet(0,0)) * core.bdryRoles(0,0),
tri->getTetrahedron((*it)->tetImage(core.bdryTet(0,1))),
(*it)->facePerm(core.bdryTet(0,1)) * core.bdryRoles(0,1),
matchReln)) {
// It's a match!
NLayeredTorusBundle* ans = new NLayeredTorusBundle(core);
ans->coreIso_ = *it;
ans->reln_ = core.bdryReln(0) * matchReln *
core.bdryReln(1).inverse();
// Delete the remaining isomorphisms that we never even
// looked at.
for (it++; it != isos.end(); it++)
delete *it;
return ans;
}
// No match. Delete this isomorphism; we won't need it any more.
delete *it;
continue;
}
// Nothing found.
return 0;
}
NManifold* NLayeredTorusBundle::getManifold() const {
// Note that this one-liner appears again in getHomologyH1(), where
// we use the underlying NTorusBundle for homology calculations.
return new NTorusBundle(core_.parallelReln() * reln_);
}
NAbelianGroup* NLayeredTorusBundle::getHomologyH1() const {
// It's implemented in NTorusBundle, so ride on that for now.
// We'll implement it directly here in good time.
return NTorusBundle(core_.parallelReln() * reln_).getHomologyH1();
}
std::ostream& NLayeredTorusBundle::writeCommonName(std::ostream& out,
bool tex) const {
if (tex) {
out << "B_{";
core_.writeTeXName(out);
} else {
out << "B(";
core_.writeName(out);
}
out << " | " << reln_[0][0] << ',' << reln_[0][1];
out << " | " << reln_[1][0] << ',' << reln_[1][1];
return out << (tex ? "}" : ")");
}
void NLayeredTorusBundle::writeTextLong(std::ostream& out) const {
out << "Layered torus bundle: ";
writeName(out);
}
} // namespace regina
|