File: nlayeredsurfacebundle.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (177 lines) | stat: -rw-r--r-- 6,619 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "manifold/ntorusbundle.h"
#include "subcomplex/nlayeredsurfacebundle.h"
#include "subcomplex/nlayering.h"
#include "subcomplex/ntxicore.h"
#include "triangulation/nisomorphism.h"
#include "triangulation/ntriangulation.h"

namespace regina {

namespace {
    const NTxIDiagonalCore core_T_6_1(6, 1);
    const NTxIDiagonalCore core_T_7_1(7, 1);
    const NTxIDiagonalCore core_T_8_1(8, 1);
    const NTxIDiagonalCore core_T_8_2(8, 2);
    const NTxIDiagonalCore core_T_9_1(9, 1);
    const NTxIDiagonalCore core_T_9_2(9, 2);
    const NTxIDiagonalCore core_T_10_1(10, 1);
    const NTxIDiagonalCore core_T_10_2(10, 2);
    const NTxIDiagonalCore core_T_10_3(10, 3);
    const NTxIParallelCore core_T_p;
}

NLayeredTorusBundle::~NLayeredTorusBundle() {
    delete coreIso_;
}

NLayeredTorusBundle* NLayeredTorusBundle::isLayeredTorusBundle(
        NTriangulation* tri) {
    // Basic property checks.
    if (! tri->isClosed())
        return 0;
    if (tri->getNumberOfVertices() > 1)
        return 0;
    if (tri->getNumberOfComponents() > 1)
        return 0;
    if (tri->getNumberOfTetrahedra() < 6)
        return 0;

    // We have a 1-vertex 1-component closed triangulation with at least
    // six tetrahedra.

    // Hunt for the core thin torus bundle.
    NLayeredTorusBundle* ans;
    if ((ans = hunt(tri, core_T_6_1)))
        return ans;
    if ((ans = hunt(tri, core_T_7_1)))
        return ans;
    if ((ans = hunt(tri, core_T_8_1)))
        return ans;
    if ((ans = hunt(tri, core_T_8_2)))
        return ans;
    if ((ans = hunt(tri, core_T_9_1)))
        return ans;
    if ((ans = hunt(tri, core_T_9_2)))
        return ans;
    if ((ans = hunt(tri, core_T_10_1)))
        return ans;
    if ((ans = hunt(tri, core_T_10_2)))
        return ans;
    if ((ans = hunt(tri, core_T_10_3)))
        return ans;
    if ((ans = hunt(tri, core_T_p)))
        return ans;

    return 0;
}

NLayeredTorusBundle* NLayeredTorusBundle::hunt(NTriangulation* tri,
        const NTxICore& core) {
    std::list<NIsomorphism*> isos;
    if (! core.core().findAllSubcomplexesIn(*tri, isos))
        return 0;

    // Run through each isomorphism and look for the corresponding layering.
    NMatrix2 matchReln;
    for (std::list<NIsomorphism*>::const_iterator it = isos.begin();
            it != isos.end(); it++) {
        // Apply the layering to the lower boundary and see if it
        // matches nicely with the upper.
        NLayering layering(
            tri->getTetrahedron((*it)->tetImage(core.bdryTet(1,0))),
            (*it)->facePerm(core.bdryTet(1,0)) * core.bdryRoles(1,0),
            tri->getTetrahedron((*it)->tetImage(core.bdryTet(1,1))),
            (*it)->facePerm(core.bdryTet(1,1)) * core.bdryRoles(1,1));
        layering.extend();

        if (layering.matchesTop(
                tri->getTetrahedron((*it)->tetImage(core.bdryTet(0,0))),
                (*it)->facePerm(core.bdryTet(0,0)) * core.bdryRoles(0,0),
                tri->getTetrahedron((*it)->tetImage(core.bdryTet(0,1))),
                (*it)->facePerm(core.bdryTet(0,1)) * core.bdryRoles(0,1),
                matchReln)) {
            // It's a match!
            NLayeredTorusBundle* ans = new NLayeredTorusBundle(core);
            ans->coreIso_ = *it;
            ans->reln_ = core.bdryReln(0) * matchReln *
                core.bdryReln(1).inverse();

            // Delete the remaining isomorphisms that we never even
            // looked at.
            for (it++; it != isos.end(); it++)
                delete *it;

            return ans;
        }

        // No match.  Delete this isomorphism; we won't need it any more.
        delete *it;
        continue;
    }

    // Nothing found.
    return 0;
}

NManifold* NLayeredTorusBundle::getManifold() const {
    // Note that this one-liner appears again in getHomologyH1(), where
    // we use the underlying NTorusBundle for homology calculations.
    return new NTorusBundle(core_.parallelReln() * reln_);
}

NAbelianGroup* NLayeredTorusBundle::getHomologyH1() const {
    // It's implemented in NTorusBundle, so ride on that for now.
    // We'll implement it directly here in good time.
    return NTorusBundle(core_.parallelReln() * reln_).getHomologyH1();
}

std::ostream& NLayeredTorusBundle::writeCommonName(std::ostream& out,
        bool tex) const {
    if (tex) {
        out << "B_{";
        core_.writeTeXName(out);
    } else {
        out << "B(";
        core_.writeName(out);
    }

    out << " | " << reln_[0][0] << ',' << reln_[0][1];
    out << " | " << reln_[1][0] << ',' << reln_[1][1];

    return out << (tex ? "}" : ")");
}

void NLayeredTorusBundle::writeTextLong(std::ostream& out) const {
    out << "Layered torus bundle: ";
    writeName(out);
}

} // namespace regina