1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "triangulation/ntetrahedron.h"
#include "subcomplex/nlayering.h"
namespace regina {
NLayering::NLayering(NTetrahedron* bdry0, NPerm roles0, NTetrahedron* bdry1,
NPerm roles1) : size(0), reln(1, 0, 0, 1) {
oldBdryTet[0] = newBdryTet[0] = bdry0;
oldBdryTet[1] = newBdryTet[1] = bdry1;
oldBdryRoles[0] = newBdryRoles[0] = roles0;
oldBdryRoles[1] = newBdryRoles[1] = roles1;
}
bool NLayering::extendOne() {
// See if we move to a common new tetrahedron.
// Also make sure this really is a new tetrahedron, so we don't get
// stuck in a loop.
NTetrahedron* next = newBdryTet[0]->getAdjacentTetrahedron(
newBdryRoles[0][3]);
if (next == 0 || next == newBdryTet[0] || next == newBdryTet[1] ||
next == oldBdryTet[0] || next == oldBdryTet[1])
return false;
if (next != newBdryTet[1]->getAdjacentTetrahedron(newBdryRoles[1][3]))
return false;
// Get the mappings from the boundary vertex roles to the new tetrahedron
// vertices.
NPerm cross0 = newBdryTet[0]->getAdjacentTetrahedronGluing(
newBdryRoles[0][3]) * newBdryRoles[0];
NPerm cross1 = newBdryTet[1]->getAdjacentTetrahedronGluing(
newBdryRoles[1][3]) * newBdryRoles[1];
// Is it actually a layering?
if (cross1 == cross0 * NPerm(3, 2, 1, 0)) {
// We're layering over the edge joining vertex roles 1 and 2.
size++;
newBdryRoles[0] = cross0 * NPerm(0, 1, 3, 2);
newBdryRoles[1] = cross0 * NPerm(3, 2, 0, 1);
newBdryTet[0] = newBdryTet[1] = next;
// new a = old a = reln00 p + reln01 q
// new b = old a + old b = (reln00 + reln10) p + (reln01 + reln11) q
reln[1][0] += reln[0][0];
reln[1][1] += reln[0][1];
return true;
} else if (cross1 == cross0 * NPerm(2, 3, 0, 1)) {
// We're layering over the edge joining vertex roles 0 and 2.
size++;
newBdryRoles[0] = cross0 * NPerm(0, 1, 3, 2);
newBdryRoles[1] = cross0 * NPerm(2, 3, 1, 0);
newBdryTet[0] = newBdryTet[1] = next;
// new a = old a = reln00 p + reln01 q
// new b = old b - old a = (reln10 - reln00) p + (reln11 - reln01) q
reln[1][0] -= reln[0][0];
reln[1][1] -= reln[0][1];
return true;
} else if (cross1 == cross0 * NPerm(1, 0, 3, 2)) {
// We're layering over the edge joining vertex roles 0 and 1.
size++;
newBdryRoles[0] = cross0 * NPerm(0, 3, 2, 1);
newBdryRoles[1] = cross0 * NPerm(1, 2, 3, 0);
newBdryTet[0] = newBdryTet[1] = next;
// new a = old a - old b = (reln00 - reln10) p + (reln01 - reln11) q
// new b = old b = reln10 p + reln11 q
reln[0][0] -= reln[1][0];
reln[0][1] -= reln[1][1];
return true;
}
// It's not a layering at all.
return false;
}
unsigned long NLayering::extend() {
unsigned long added = 0;
while (extendOne())
added++;
return added;
}
bool NLayering::matchesTop(NTetrahedron* upperBdry0, NPerm upperRoles0,
NTetrahedron* upperBdry1, NPerm upperRoles1, NMatrix2& upperReln)
const {
// We can cut half our cases by assuming that upperBdry0 meets with
// newBdryTet[0] and that upperBdry1 meets with newBdryTet[1].
bool rot180;
if (upperBdry0->getAdjacentTetrahedron(upperRoles0[3]) == newBdryTet[1] &&
upperBdry0->getAdjacentFace(upperRoles0[3]) == newBdryRoles[1][3]) {
// If it does match, it's the opposite matching (upperBdry0 with
// newBdryTet[1] and vice versa). Switch them and remember what
// we did.
NTetrahedron* tmpTet = upperBdry0;
upperBdry0 = upperBdry1;
upperBdry1 = tmpTet;
NPerm tmpPerm = upperRoles0;
upperRoles0 = upperRoles1;
upperRoles1 = tmpPerm;
rot180 = true;
} else {
// If it does match, it's what we'd like.
rot180 = false;
}
// Do we meet the right tetrahedra and faces?
if (upperBdry0->getAdjacentTetrahedron(upperRoles0[3]) != newBdryTet[0])
return false;
if (upperBdry0->getAdjacentFace(upperRoles0[3]) != newBdryRoles[0][3])
return false;
if (upperBdry1->getAdjacentTetrahedron(upperRoles1[3]) != newBdryTet[1])
return false;
if (upperBdry1->getAdjacentFace(upperRoles1[3]) != newBdryRoles[1][3])
return false;
// Find the mapping from the upper vertex roles to the boundary
// vertex roles. Verify that this mapping is consistent for both faces.
NPerm cross = newBdryRoles[0].inverse() * upperBdry0->
getAdjacentTetrahedronGluing(upperRoles0[3]) * upperRoles0;
if (cross != newBdryRoles[1].inverse() * upperBdry1->
getAdjacentTetrahedronGluing(upperRoles1[3]) * upperRoles1)
return false;
// It's a match! Run through the six possible mappings to get the
// relationship matrix correct.
if (cross == NPerm(0, 1, 2, 3)) {
// It's the identity.
upperReln = reln;
} else if (cross == NPerm(0, 2, 1, 3)) {
// new a = + old b
// new b = + old a
upperReln = NMatrix2(0, 1, 1, 0) * reln;
} else if (cross == NPerm(1, 0, 2, 3)) {
// new a = - old a
// new b = - old a + old b
upperReln = NMatrix2(-1, 0, -1, 1) * reln;
} else if (cross == NPerm(1, 2, 0, 3)) {
// new a = - old a + old b
// new b = - old a
upperReln = NMatrix2(-1, 1, -1, 0) * reln;
} else if (cross == NPerm(2, 0, 1, 3)) {
// new a = - old b
// new b = + old a - old b
upperReln = NMatrix2(0, -1, 1, -1) * reln;
} else if (cross == NPerm(2, 1, 0, 3)) {
// new a = + old a - old b
// new b = - old b
upperReln = NMatrix2(1, -1, 0, -1) * reln;
}
// Don't forget to account for the 180 degree rotation if it
// happened.
if (rot180)
upperReln.negate();
return true;
}
} // namespace regina
|