1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "manifold/ngraphloop.h"
#include "manifold/nsfs.h"
#include "subcomplex/nlayering.h"
#include "subcomplex/npluggedtorusbundle.h"
#include "subcomplex/nsatregion.h"
#include "subcomplex/ntxicore.h"
#include "triangulation/nisomorphism.h"
#include "triangulation/ntriangulation.h"
namespace regina {
namespace {
const NTxIDiagonalCore core_T_6_1(6, 1);
const NTxIDiagonalCore core_T_7_1(7, 1);
const NTxIDiagonalCore core_T_8_1(8, 1);
const NTxIDiagonalCore core_T_8_2(8, 2);
const NTxIDiagonalCore core_T_9_1(9, 1);
const NTxIDiagonalCore core_T_9_2(9, 2);
const NTxIDiagonalCore core_T_10_1(10, 1);
const NTxIDiagonalCore core_T_10_2(10, 2);
const NTxIDiagonalCore core_T_10_3(10, 3);
const NTxIParallelCore core_T_p;
}
NPluggedTorusBundle::~NPluggedTorusBundle() {
delete bundleIso_;
delete region_;
}
NManifold* NPluggedTorusBundle::getManifold() const {
NSFSpace* sfs = region_->createSFS(2, false);
if (! sfs)
return 0;
sfs->reduce(false);
return new NGraphLoop(sfs, matchingReln_);
}
std::ostream& NPluggedTorusBundle::writeName(std::ostream& out) const {
out << "Plugged Torus Bundle [";
bundle_.writeName(out);
out << " | ";
region_->writeBlockAbbrs(out, false);
return out << ']';
}
std::ostream& NPluggedTorusBundle::writeTeXName(std::ostream& out) const {
out << "\\mathrm{PTB}\\left[";
bundle_.writeTeXName(out);
out << "\\,|\\n";
region_->writeBlockAbbrs(out, true);
return out << "\\right]";
}
void NPluggedTorusBundle::writeTextLong(std::ostream& out) const {
out << "Plugged torus bundle, fibre/orbifold relation " << matchingReln_
<< '\n';
out << "Thin I-bundle: ";
bundle_.writeName(out);
out << '\n';
region_->writeDetail(out, "Saturated region");
}
NPluggedTorusBundle* NPluggedTorusBundle::isPluggedTorusBundle(
NTriangulation* tri) {
// Basic property checks.
if (! tri->isClosed())
return 0;
if (tri->getNumberOfComponents() > 1)
return 0;
// The smallest non-trivial examples of these have nine tetrahedra
// (six for the TxI core and another three for a non-trivial region).
if (tri->getNumberOfTetrahedra() < 9)
return 0;
// We have a closed and connected triangulation with at least
// nine tetrahedra.
// Hunt for the thin torus bundle.
NPluggedTorusBundle* ans;
if ((ans = hunt(tri, core_T_6_1)))
return ans;
if ((ans = hunt(tri, core_T_7_1)))
return ans;
if ((ans = hunt(tri, core_T_8_1)))
return ans;
if ((ans = hunt(tri, core_T_8_2)))
return ans;
if ((ans = hunt(tri, core_T_9_1)))
return ans;
if ((ans = hunt(tri, core_T_9_2)))
return ans;
if ((ans = hunt(tri, core_T_10_1)))
return ans;
if ((ans = hunt(tri, core_T_10_2)))
return ans;
if ((ans = hunt(tri, core_T_10_3)))
return ans;
if ((ans = hunt(tri, core_T_p)))
return ans;
return 0;
}
NPluggedTorusBundle* NPluggedTorusBundle::hunt(NTriangulation* triang,
const NTxICore& bundle) {
std::list<NIsomorphism*> isos;
if (! bundle.core().findAllSubcomplexesIn(*triang, isos))
return 0;
int regionPos;
NPerm annulusToUpperLayer;
NSatAnnulus upperAnnulus, lowerAnnulus, bdryAnnulus;
NSatBlock::TetList avoidTets;
NSatBlock* starter;
NSatRegion* region;
bool bdryRefVert, bdryRefHoriz;
// Run through each isomorphism and look for the corresponding layering.
for (std::list<NIsomorphism*>::const_iterator it = isos.begin();
it != isos.end(); it++) {
// Apply layerings to the upper and lower boundaries.
NLayering layerUpper(
triang->getTetrahedron((*it)->tetImage(bundle.bdryTet(0,0))),
(*it)->facePerm(bundle.bdryTet(0,0)) * bundle.bdryRoles(0,0),
triang->getTetrahedron((*it)->tetImage(bundle.bdryTet(0,1))),
(*it)->facePerm(bundle.bdryTet(0,1)) * bundle.bdryRoles(0,1));
layerUpper.extend();
NLayering layerLower(
triang->getTetrahedron((*it)->tetImage(bundle.bdryTet(1,0))),
(*it)->facePerm(bundle.bdryTet(1,0)) * bundle.bdryRoles(1,0),
triang->getTetrahedron((*it)->tetImage(bundle.bdryTet(1,1))),
(*it)->facePerm(bundle.bdryTet(1,1)) * bundle.bdryRoles(1,1));
layerLower.extend();
// Count tetrahedra to ensure that the layerings haven't crossed.
// In fact, we should have at least three spare tetrahedra for
// housing a non-trivial saturated region.
if (layerLower.getSize() + layerUpper.getSize() +
bundle.core().getNumberOfTetrahedra() + 3 >
triang->getNumberOfTetrahedra()) {
// No good. Move on.
delete *it;
continue;
}
lowerAnnulus.tet[0] = layerLower.getNewBoundaryTet(0);
lowerAnnulus.tet[1] = layerLower.getNewBoundaryTet(1);
lowerAnnulus.roles[0] = layerLower.getNewBoundaryRoles(0);
lowerAnnulus.roles[1] = layerLower.getNewBoundaryRoles(1);
// Look for the saturated region.
for (regionPos = 0; regionPos < 3; regionPos++) {
// Construct the permutation from 0/1/2 markings on the
// first saturated annulus boundary to 0/1/2 markings on the
// first boundary face above the layering.
annulusToUpperLayer = NPerm(regionPos, (regionPos + 1) % 3,
(regionPos + 2) % 3, 3);
upperAnnulus.tet[0] = layerUpper.getNewBoundaryTet(0);
upperAnnulus.tet[1] = layerUpper.getNewBoundaryTet(1);
upperAnnulus.roles[0] = layerUpper.getNewBoundaryRoles(0)
* annulusToUpperLayer;
upperAnnulus.roles[1] = layerUpper.getNewBoundaryRoles(1)
* annulusToUpperLayer;
// Recall that we already know the triangulation to be closed.
upperAnnulus.switchSides();
// Construct the list of tetrahedra to avoid when searching for the
// saturated region. Don't worry about all the internal tetrahedra
// within the layerings or the thin I-bundle; as long as we've got
// the boundary tetrahedra we'll be fine.
avoidTets.clear();
avoidTets.insert(layerUpper.getNewBoundaryTet(0));
avoidTets.insert(layerUpper.getNewBoundaryTet(1));
avoidTets.insert(layerLower.getNewBoundaryTet(0));
avoidTets.insert(layerLower.getNewBoundaryTet(1));
starter = NSatBlock::isBlock(upperAnnulus, avoidTets);
if (! starter)
continue;
// We have a starter block. Make a region out of it, and
// ensure that region has precisely two boundary annuli.
region = new NSatRegion(starter);
region->expand(avoidTets, false);
if (region->numberOfBoundaryAnnuli() != 2) {
delete region;
continue;
}
// From the NSatRegion specifications we know that the first
// boundary annulus will be upperAnnulus. Find the second.
bdryAnnulus = region->boundaryAnnulus(1, bdryRefVert, bdryRefHoriz);
// Hope like hell that this meets up with the lower layering
// boundary. Note that this will force it to be a torus also.
NMatrix2 upperRolesToLower;
if (! lowerAnnulus.isJoined(bdryAnnulus, upperRolesToLower)) {
delete region;
continue;
}
// All good!
// Better work out what we've got here.
// Mapping from fibre/base curves (f0, o0) to upperAnnulus
// edges (first face: 01, first face: 02).
NMatrix2 curvesToUpperAnnulus(-1, 0, 0, 1);
// Mapping from upperAnnulus edges (first: 01, first: 02) to
// upper layering boundary roles (first: 01, first: 02).
NMatrix2 upperAnnulusToUpperLayer;
if (regionPos == 0)
upperAnnulusToUpperLayer = NMatrix2(1, 0, 0, 1);
else if (regionPos == 1)
upperAnnulusToUpperLayer = NMatrix2(0, -1, 1, -1);
else
upperAnnulusToUpperLayer = NMatrix2(-1, 1, -1, 0);
// Mapping from upper layering boundary roles
// (first: 01, first: 02) to the bundle boundary 0 roles
// (first: 01, first: 02) is layerUpper.boundaryReln().inverse().
// Mapping from bundle boundary 0 roles (first: 01, first: 02) to
// bundle boundary 0 (alpha, beta) is bundle.bdryReln(0).
// Mapping from bundle boundary 0 (alpha, beta) to bundle boundary 1
// (alpha, beta) is bundle.parallelReln().
// Mapping from bundle boundary 1 (alpha, beta) to bundle boundary 1
// roles (first: 01, first: 02) is bundle.bdryReln(1).inverse().
// Mapping from bundle boundary 1 roles (first: 01, first: 02) to
// lower layering boundary roles (first: 01, first: 02) is
// layerLower.boundaryReln().
// Mapping from lower layering boundary roles (first: 01, first: 02)
// to lower annulus boundary roles (first: 01, first: 02) is the
// identity.
// SO: Here comes the mapping from fibre/base curves (f0, o0)
// to lower annulus boundary roles (first: 01, first: 02):
NMatrix2 curvesToLowerAnnulus =
layerLower.boundaryReln() *
bundle.bdryReln(1).inverse() *
bundle.parallelReln() *
bundle.bdryReln(0) *
layerUpper.boundaryReln().inverse() *
upperAnnulusToUpperLayer *
curvesToUpperAnnulus;
// Now let's work out the mapping from fibre/base curves (f1, o1)
// to bdryAnnulus roles (first: 01, first: 02). This is
// rather simpler.
NMatrix2 curvesToBdryAnnulus(bdryRefVert ? 1 : -1, 0, 0,
bdryRefHoriz ? -1 : 1);
// Finally, we already know how the two annuli are joined
// together -- we worked this out earlier as upperRolesToLower.
// Note that curvesToBdryAnnulus is self-inverse, so we won't
// bother inverting it even though we should.
NPluggedTorusBundle* ans = new NPluggedTorusBundle(bundle, *it,
region, curvesToBdryAnnulus * upperRolesToLower.inverse() *
curvesToLowerAnnulus);
// Before we head home, delete the remaining isomorphisms
// that we never looked at.
for (it++; it != isos.end(); it++)
delete *it;
return ans;
}
// No match. Delete this isomorphism; we won't need it any more.
delete *it;
continue;
}
// Nothing found.
return 0;
}
} // namespace regina
|