1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "algebra/nabeliangroup.h"
#include "manifold/nsnappeacensusmfd.h"
#include "subcomplex/nsnappeacensustri.h"
#include "triangulation/ncomponent.h"
#include "triangulation/nedge.h"
#include "triangulation/nface.h"
#include "triangulation/nvertex.h"
namespace regina {
const char NSnapPeaCensusTri::SEC_5 = 'm';
const char NSnapPeaCensusTri::SEC_6_OR = 's';
const char NSnapPeaCensusTri::SEC_6_NOR = 'x';
const char NSnapPeaCensusTri::SEC_7_OR = 'v';
const char NSnapPeaCensusTri::SEC_7_NOR = 'y';
NSnapPeaCensusTri* NSnapPeaCensusTri::isSmallSnapPeaCensusTri(
const NComponent* comp) {
// Currently this routine can recognise SnapPea triangulations
// m000 -- m004 as well as m129.
// Since the triangulations are so small we can use census results
// (from a census of all small valid ideal triangulations) to recognise
// the triangulations by properties alone.
// Before we do any further checks, make sure the number of
// tetrahedra is within the supported range.
if (comp->getNumberOfTetrahedra() > 4)
return 0;
// Start with property checks to see if it has a chance of being
// in the SnapPea census at all. The component must not be
// closed, every edge must be valid and every vertex link must be
// either a torus or a Klein bottle. Note that this implies
// that there are no boundary faces.
if (comp->isClosed())
return 0;
unsigned long nVertices = comp->getNumberOfVertices();
unsigned long nEdges = comp->getNumberOfEdges();
unsigned long i;
int link;
for (i = 0; i < nVertices; i++) {
link = comp->getVertex(i)->getLink();
if (link != NVertex::TORUS && link != NVertex::KLEIN_BOTTLE)
return 0;
}
for (i = 0; i < nEdges; i++)
if (! comp->getEdge(i)->isValid())
return 0;
// Now search for specific triangulations.
if (comp->getNumberOfTetrahedra() == 1) {
// At this point it must be m000, since there are no others
// that fit these constraints. But test orientability
// anyway just to be safe.
if (comp->isOrientable())
return 0;
return new NSnapPeaCensusTri(SEC_5, 0);
} else if (comp->getNumberOfTetrahedra() == 2) {
if (comp->isOrientable()) {
// Orientable. Looking for m003 or m004.
if (comp->getNumberOfVertices() != 1)
return 0;
if (comp->getNumberOfEdges() != 2)
return 0;
if (comp->getEdge(0)->getNumberOfEmbeddings() != 6 ||
comp->getEdge(1)->getNumberOfEmbeddings() != 6)
return 0;
// Now we know it's either m003 or m004. We distinguish
// between them by face types, since all of m003's faces
// are Mobius bands and all of m004's faces are horns.
if (comp->getFace(0)->getType() == NFace::MOBIUS)
return new NSnapPeaCensusTri(SEC_5, 3);
else
return new NSnapPeaCensusTri(SEC_5, 4);
} else {
// Non-orientable. Looking for m001 or m002.
if (comp->getNumberOfVertices() == 1) {
// Looking for m001.
if (comp->getNumberOfEdges() != 2)
return 0;
if (! ((comp->getEdge(0)->getNumberOfEmbeddings() == 4 &&
comp->getEdge(1)->getNumberOfEmbeddings() == 8) ||
(comp->getEdge(0)->getNumberOfEmbeddings() == 8 &&
comp->getEdge(1)->getNumberOfEmbeddings() == 4)))
return 0;
// Census says it's m001 if no face forms a dunce hat.
for (int i = 0; i < 4; i++)
if (comp->getFace(i)->getType() == NFace::DUNCEHAT)
return 0;
return new NSnapPeaCensusTri(SEC_5, 1);
} else if (comp->getNumberOfVertices() == 2) {
// Looking for m002.
if (comp->getNumberOfEdges() != 2)
return 0;
if (comp->getEdge(0)->getNumberOfEmbeddings() != 6 ||
comp->getEdge(1)->getNumberOfEmbeddings() != 6)
return 0;
// Census says it's m002 if some face forms a dunce hat.
for (int i = 0; i < 4; i++)
if (comp->getFace(i)->getType() == NFace::DUNCEHAT)
return new NSnapPeaCensusTri(SEC_5, 2);
return 0;
}
}
} else if (comp->getNumberOfTetrahedra() == 4) {
if (comp->isOrientable()) {
// Search for the Whitehead link complement.
// Note that this could be done with a smaller set of tests
// since some can be deduced from others, but these tests
// aren't terribly expensive anyway.
if (comp->getNumberOfVertices() != 2)
return 0;
if (comp->getNumberOfEdges() != 4)
return 0;
if (comp->getVertex(0)->getLink() != NVertex::TORUS)
return 0;
if (comp->getVertex(1)->getLink() != NVertex::TORUS)
return 0;
if (comp->getVertex(0)->getNumberOfEmbeddings() != 8)
return 0;
if (comp->getVertex(1)->getNumberOfEmbeddings() != 8)
return 0;
// Census says it's the Whitehead link if some edge has
// degree 8.
for (int i = 0; i < 4; i++)
if (comp->getEdge(i)->getNumberOfEmbeddings() == 8)
return new NSnapPeaCensusTri(SEC_5, 129);
return 0;
}
}
// Not recognised after all.
return 0;
}
NManifold* NSnapPeaCensusTri::getManifold() const {
return new NSnapPeaCensusManifold(section, index);
}
NAbelianGroup* NSnapPeaCensusTri::getHomologyH1() const {
// Hard-code the smallest cases.
if (section == SEC_5) {
if (index == 0 || index == 4) {
NAbelianGroup* ans = new NAbelianGroup();
ans->addRank();
return ans;
}
if (index == 1 || index == 2) {
NAbelianGroup* ans = new NAbelianGroup();
ans->addRank();
ans->addTorsionElement(2);
return ans;
}
if (index == 3) {
NAbelianGroup* ans = new NAbelianGroup();
ans->addRank();
ans->addTorsionElement(5);
return ans;
}
if (index == 129) {
// Whitehead link complement.
NAbelianGroup* ans = new NAbelianGroup();
ans->addRank(2);
return ans;
}
}
// Leave it as an unknown.
return 0;
}
std::ostream& NSnapPeaCensusTri::writeName(std::ostream& out) const {
out << "SnapPea " << section;
// Pad the index with leading zeroes.
// All sections are written with three-digit indices, except for
// 7-tetrahedron orientable which uses four-digit indices.
if (section == SEC_7_OR && index < 1000)
out << '0';
if (index < 100)
out << '0';
if (index < 10)
out << '0';
out << index;
return out;
}
std::ostream& NSnapPeaCensusTri::writeTeXName(std::ostream& out) const {
out << section << "_{";
// Pad the index with leading zeroes.
// All sections are written with three-digit indices, except for
// 7-tetrahedron orientable which uses four-digit indices.
if (section == SEC_7_OR && index < 1000)
out << '0';
if (index < 100)
out << '0';
if (index < 10)
out << '0';
out << index << '}';
return out;
}
} // namespace regina
|