1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <vector>
#include "algebra/nabeliangroup.h"
#include "manifold/nhandlebody.h"
#include "subcomplex/nspiralsolidtorus.h"
#include "triangulation/ntriangulation.h"
namespace regina {
NSpiralSolidTorus* NSpiralSolidTorus::clone() const {
NSpiralSolidTorus* ans = new NSpiralSolidTorus(nTet);
for (unsigned long i = 0; i < nTet; i++) {
ans->tet[i] = tet[i];
ans->vertexRoles[i] = vertexRoles[i];
}
return ans;
}
void NSpiralSolidTorus::reverse() {
NTetrahedron** newTet = new NTetrahedron*[nTet];
NPerm* newRoles = new NPerm[nTet];
NPerm switchPerm(3, 2, 1, 0);
for (unsigned long i = 0; i < nTet; i++) {
newTet[i] = tet[nTet - 1 - i];
newRoles[i] = vertexRoles[nTet - 1 - i] * switchPerm;
}
delete[] tet;
delete[] vertexRoles;
tet = newTet;
vertexRoles = newRoles;
}
void NSpiralSolidTorus::cycle(unsigned long k) {
NTetrahedron** newTet = new NTetrahedron*[nTet];
NPerm* newRoles = new NPerm[nTet];
for (unsigned long i = 0; i < nTet; i++) {
newTet[i] = tet[(i + k) % nTet];
newRoles[i] = vertexRoles[(i + k) % nTet];
}
delete[] tet;
delete[] vertexRoles;
tet = newTet;
vertexRoles = newRoles;
}
bool NSpiralSolidTorus::makeCanonical(const NTriangulation* tri) {
unsigned long i, index;
unsigned long baseTet = 0;
unsigned long baseIndex = tri->tetrahedronIndex(tet[0]);
for (i = 1; i < nTet; i++) {
index = tri->tetrahedronIndex(tet[i]);
if (index < baseIndex) {
baseIndex = index;
baseTet = i;
}
}
bool reverseAlso = (vertexRoles[baseTet][0] > vertexRoles[baseTet][3]);
if (baseTet == 0 && (! reverseAlso))
return false;
NTetrahedron** newTet = new NTetrahedron*[nTet];
NPerm* newRoles = new NPerm[nTet];
if (reverseAlso) {
// Make baseTet into tetrahedron 0 and reverse.
NPerm switchPerm(3, 2, 1, 0);
for (unsigned long i = 0; i < nTet; i++) {
newTet[i] = tet[(baseTet + nTet - i) % nTet];
newRoles[i] = vertexRoles[(baseTet + nTet - i) % nTet] *
switchPerm;
}
} else {
// Make baseTet into tetrahedron 0 but don't reverse.
for (unsigned long i = 0; i < nTet; i++) {
newTet[i] = tet[(i + baseTet) % nTet];
newRoles[i] = vertexRoles[(i + baseTet) % nTet];
}
}
delete[] tet;
delete[] vertexRoles;
tet = newTet;
vertexRoles = newRoles;
return true;
}
bool NSpiralSolidTorus::isCanonical(const NTriangulation* tri) const {
if (vertexRoles[0][0] > vertexRoles[0][3])
return false;
long baseIndex = tri->tetrahedronIndex(tet[0]);
for (unsigned long i = 1; i < nTet; i++)
if (tri->tetrahedronIndex(tet[i]) < baseIndex)
return false;
return true;
}
NSpiralSolidTorus* NSpiralSolidTorus::formsSpiralSolidTorus(NTetrahedron* tet,
NPerm useVertexRoles) {
NPerm invRoleMap(1, 2, 3, 0); // Maps upper roles to lower roles.
NTetrahedron* base = tet;
NPerm baseRoles(useVertexRoles);
std::vector<NTetrahedron*> tets;
std::vector<NPerm> roles;
stdhash::hash_set<NTetrahedron*, HashPointer> usedTets;
tets.push_back(tet);
roles.push_back(useVertexRoles);
usedTets.insert(tet);
NTetrahedron* adjTet;
NPerm adjRoles;
while (1) {
// Examine the tetrahedron beyond tet.
adjTet = tet->getAdjacentTetrahedron(useVertexRoles[0]);
adjRoles = tet->getAdjacentTetrahedronGluing(useVertexRoles[0]) *
useVertexRoles * invRoleMap;
// Check that we haven't hit the boundary.
if (adjTet == 0)
return 0;
if (adjTet == base) {
// We're back at the beginning of the loop.
// Check that everything is glued up correctly.
if (adjRoles != baseRoles)
return 0;
// Success!
break;
}
if (usedTets.count(adjTet))
return 0;
// Move on to the next tetrahedron.
tet = adjTet;
useVertexRoles = adjRoles;
tets.push_back(tet);
roles.push_back(useVertexRoles);
usedTets.insert(tet);
}
// We've found a spiralled solid torus.
NSpiralSolidTorus* ans = new NSpiralSolidTorus(tets.size());
copy(tets.begin(), tets.end(), ans->tet);
copy(roles.begin(), roles.end(), ans->vertexRoles);
return ans;
}
NManifold* NSpiralSolidTorus::getManifold() const {
return new NHandlebody(1, true);
}
NAbelianGroup* NSpiralSolidTorus::getHomologyH1() const {
NAbelianGroup* ans = new NAbelianGroup();
ans->addRank();
return ans;
}
} // namespace regina
|