File: ntxicore.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (151 lines) | stat: -rw-r--r-- 5,644 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "subcomplex/ntxicore.h"
#include <sstream>

namespace regina {

std::string NTxICore::getName() const {
    std::ostringstream out;
    writeName(out);
    return out.str();
}

std::string NTxICore::getTeXName() const {
    std::ostringstream out;
    writeTeXName(out);
    return out.str();
}

NTxIDiagonalCore::NTxIDiagonalCore(unsigned long newSize, unsigned long newK) :
        size_(newSize), k_(newK) {
    // We'll build the actual triangulation last.  Meanwhile, fill in
    // the remaining bits and pieces.
    bdryTet_[0][0] = 0;
    bdryTet_[0][1] = 1;
    bdryTet_[1][0] = size_ - 2;
    bdryTet_[1][1] = size_ - 1;

    // All bdryRoles permutations are identities.
    // No need to change them here.

    bdryReln_[0] = NMatrix2(1, 0, 0, 1);
    bdryReln_[1] = NMatrix2(-1, 0, 0, 1);
    parallelReln_ = NMatrix2(1, size_ - 6, 0, 1);

    // Off we go!
    unsigned i;
    NTetrahedron** t = new NTetrahedron*[size_];
    for (i = 0; i < size_; i++)
        t[i] = new NTetrahedron;

    // Glue together the pairs of triangles in the central surface.
    t[0]->joinTo(0, t[1], NPerm(0, 2, 1, 3));
    t[size_ - 2]->joinTo(0, t[size_ - 1], NPerm(0, 2, 1, 3));

    // Glue together the long diagonal line of quads, and hook the ends
    // together using the first pair of triangles.
    t[0]->joinTo(1, t[3], NPerm(2, 3, 1, 0));
    for (i = 3; i < size_ - 3; i++)
        t[i]->joinTo(0, t[i + 1], NPerm(0, 3));
    t[size_ - 3]->joinTo(0, t[1], NPerm(1, 0, 2, 3));

    // Glue the quadrilateral and double-triangular bulges to their
    // horizontal neighbours.
    t[1]->joinTo(2, t[2], NPerm());
    t[2]->joinTo(3, t[0], NPerm(1, 0, 3, 2));
    t[size_ - 1]->joinTo(2, t[size_ - 2 - k_], NPerm(3, 0, 1, 2));
    t[size_ - 2]->joinTo(2, t[size_ - 2 - k_], NPerm(0, 3, 2, 1));

    // Glue in the lower edge of each bulges.
    if (k_ == size_ - 5)
        t[2]->joinTo(0, t[size_ - 2], NPerm(1, 3, 2, 0));
    else
        t[2]->joinTo(0, t[3], NPerm(2, 1, 3, 0));
    if (k_ == 1)
        t[size_ - 1]->joinTo(1, t[2], NPerm(2, 1, 3, 0));
    else
        t[size_ - 1]->joinTo(1, t[size_ - 1 - k_], NPerm(3, 2, 0, 1));

    // Glue in the lower edge of each quadrilateral.
    for (i = 3; i <= size_ - 3; i++) {
        if (i == size_ - 2 - k_)
            continue;

        if (i == size_ - 3)
            t[i]->joinTo(1, t[2], NPerm(3, 1, 0, 2));
        else if (i == size_ - 3 - k_)
            t[i]->joinTo(1, t[size_ - 2], NPerm(0, 1, 3, 2));
        else
            t[i]->joinTo(1, t[i + 1], NPerm(1, 2));
    }

    for (i = 0; i < size_; i++)
        core_.addTetrahedron(t[i]);
    delete[] t;
}

NTxIParallelCore::NTxIParallelCore() {
    // We'll build the actual triangulation last.  Meanwhile, fill in
    // the remaining bits and pieces.
    bdryTet_[0][0] = 0;
    bdryTet_[0][1] = 1;
    bdryTet_[1][0] = 4;
    bdryTet_[1][1] = 5;

    // All bdryRoles permutations are identities.
    // No need to change them here.

    bdryReln_[0] = bdryReln_[1] = parallelReln_ = NMatrix2(1, 0, 0, 1);

    // Off we go!
    // Just hard-code it.  It's only one triangulation, and it's highly
    // symmetric.
    unsigned i;
    NTetrahedron** t = new NTetrahedron*[6];
    for (i = 0; i < 6; i++)
        t[i] = new NTetrahedron;

    t[0]->joinTo(0, t[1], NPerm(1, 2));
    t[4]->joinTo(0, t[5], NPerm(1, 2));
    t[1]->joinTo(2, t[2], NPerm());
    t[5]->joinTo(2, t[3], NPerm());
    t[0]->joinTo(2, t[2], NPerm(1, 0, 3, 2));
    t[4]->joinTo(2, t[3], NPerm(1, 0, 3, 2));
    t[1]->joinTo(1, t[3], NPerm(2, 0, 3, 1));
    t[5]->joinTo(1, t[2], NPerm(2, 0, 3, 1));
    t[0]->joinTo(1, t[3], NPerm(0, 3));
    t[4]->joinTo(1, t[2], NPerm(0, 3));

    for (i = 0; i < 6; i++)
        core_.addTetrahedron(t[i]);
    delete[] t;
}

} // namespace regina