File: nsanstandard.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (162 lines) | stat: -rw-r--r-- 7,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "enumerate/ncompconstraint.h"
#include "surfaces/nsanstandard.h"
#include "utilities/nrational.h"
#include "maths/nmatrixint.h"
#include "maths/nvectorunit.h"
#include "triangulation/ntriangulation.h"

namespace regina {

NLargeInteger NNormalSurfaceVectorANStandard::getEdgeWeight(
        unsigned long edgeIndex, NTriangulation* triang) const {
    // Find a tetrahedron next to the edge in question.
    const NEdgeEmbedding& emb = triang->getEdges()[edgeIndex]->
        getEmbeddings().front();
    long tetIndex = triang->tetrahedronIndex(emb.getTetrahedron());
    int start = emb.getVertices()[0];
    int end = emb.getVertices()[1];

    // Add up the triangles, quads and octagons meeting that edge.
    // Triangles:
    NLargeInteger ans((*this)[10 * tetIndex + start]);
    ans += (*this)[10 * tetIndex + end];
    // Quads:
    ans += (*this)[10 * tetIndex + 4 + vertexSplitMeeting[start][end][0]];
    ans += (*this)[10 * tetIndex + 4 + vertexSplitMeeting[start][end][1]];
    // Octagons:
    ans += (*this)[10 * tetIndex + 7];
    ans += (*this)[10 * tetIndex + 8];
    ans += (*this)[10 * tetIndex + 9];
    ans += (*this)[10 * tetIndex + 7 + vertexSplit[start][end]];
    return ans;
}

NLargeInteger NNormalSurfaceVectorANStandard::getFaceArcs(
        unsigned long faceIndex, int faceVertex, NTriangulation* triang) const {
    // Find a tetrahedron next to the face in question.
    const NFaceEmbedding& emb = triang->getFaces()[faceIndex]->
        getEmbedding(0);
    long tetIndex = triang->tetrahedronIndex(emb.getTetrahedron());
    int vertex = emb.getVertices()[faceVertex];
    int backOfFace = emb.getVertices()[3];

    // Add up the discs meeting that face in that required arc.
    // Triangles:
    NLargeInteger ans((*this)[10 * tetIndex + vertex]);
    // Quads:
    ans += (*this)[10 * tetIndex + 4 + vertexSplit[vertex][backOfFace]];
    // Octagons:
    ans += (*this)[10 * tetIndex + 7 +
        vertexSplitMeeting[vertex][backOfFace][0]];
    ans += (*this)[10 * tetIndex + 7 +
        vertexSplitMeeting[vertex][backOfFace][1]];
    return ans;
}

NMatrixInt* NNormalSurfaceVectorANStandard::makeMatchingEquations(
        NTriangulation* triangulation) {
    unsigned long nCoords = 10 * triangulation->getNumberOfTetrahedra();
    // Three equations per non-boundary face.
    // F_boundary + 2 F_internal = 4 T
    long nEquations = 3 * (4 * long(triangulation->getNumberOfTetrahedra()) -
        long(triangulation->getNumberOfFaces()));
    NMatrixInt* ans = new NMatrixInt(nEquations, nCoords);

    // Run through each internal face and add the corresponding three
    // equations.
    unsigned row = 0;
    int i;
    unsigned long tet0, tet1;
    NPerm perm0, perm1;
    for (NTriangulation::FaceIterator fit = triangulation->getFaces().begin();
            fit != triangulation->getFaces().end(); fit++) {
        if (! (*fit)->isBoundary()) {
            tet0 = triangulation->tetrahedronIndex(
                (*fit)->getEmbedding(0).getTetrahedron());
            tet1 = triangulation->tetrahedronIndex(
                (*fit)->getEmbedding(1).getTetrahedron());
            perm0 = (*fit)->getEmbedding(0).getVertices();
            perm1 = (*fit)->getEmbedding(1).getVertices();
            for (i=0; i<3; i++) {
                // Triangles:
                ans->entry(row, 10*tet0 + perm0[i]) += 1;
                ans->entry(row, 10*tet1 + perm1[i]) -= 1;
                // Quads:
                ans->entry(row, 10*tet0 + 4 +
                    vertexSplit[perm0[i]][perm0[3]]) += 1;
                ans->entry(row, 10*tet1 + 4 +
                    vertexSplit[perm1[i]][perm1[3]]) -= 1;
                // Octagons:
                ans->entry(row, 10*tet0 + 7 +
                    vertexSplitMeeting[perm0[i]][perm0[3]][0]) += 1;
                ans->entry(row, 10*tet1 + 7 +
                    vertexSplitMeeting[perm1[i]][perm1[3]][0]) -= 1;
                ans->entry(row, 10*tet0 + 7 +
                    vertexSplitMeeting[perm0[i]][perm0[3]][1]) += 1;
                ans->entry(row, 10*tet1 + 7 +
                    vertexSplitMeeting[perm1[i]][perm1[3]][1]) -= 1;
                row++;
            }
        }
    }
    return ans;
}

NCompConstraintSet* NNormalSurfaceVectorANStandard::makeEmbeddedConstraints(
        NTriangulation* triangulation) {
    // At most one quad/oct per tetrahedron.
    // Also at most one oct type overall.
    NCompConstraintSet* ans = new NCompConstraintSet();
    NCompConstraint* globalOctConstraint = new NCompConstraint(1);
    std::set<unsigned>& globalOctCoords(globalOctConstraint->getCoordinates());
    NCompConstraint* constraint;

    unsigned i;
    unsigned long base = 0;
    for (unsigned long tet = 0; tet < triangulation->getNumberOfTetrahedra();
            tet++) {
        constraint = new NCompConstraint(1);
        for (i = 4; i < 10; i++)
            constraint->getCoordinates().insert(
                constraint->getCoordinates().end(), base + i);
        for (i = 7; i < 10; i++)
            globalOctCoords.insert(globalOctCoords.end(), base + i);
        base += 10;

        ans->push_back(constraint);
    }

    ans->push_back(globalOctConstraint);
    return ans;
}

} // namespace regina