1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "enumerate/ncompconstraint.h"
#include "surfaces/nsanstandard.h"
#include "utilities/nrational.h"
#include "maths/nmatrixint.h"
#include "maths/nvectorunit.h"
#include "triangulation/ntriangulation.h"
namespace regina {
NLargeInteger NNormalSurfaceVectorANStandard::getEdgeWeight(
unsigned long edgeIndex, NTriangulation* triang) const {
// Find a tetrahedron next to the edge in question.
const NEdgeEmbedding& emb = triang->getEdges()[edgeIndex]->
getEmbeddings().front();
long tetIndex = triang->tetrahedronIndex(emb.getTetrahedron());
int start = emb.getVertices()[0];
int end = emb.getVertices()[1];
// Add up the triangles, quads and octagons meeting that edge.
// Triangles:
NLargeInteger ans((*this)[10 * tetIndex + start]);
ans += (*this)[10 * tetIndex + end];
// Quads:
ans += (*this)[10 * tetIndex + 4 + vertexSplitMeeting[start][end][0]];
ans += (*this)[10 * tetIndex + 4 + vertexSplitMeeting[start][end][1]];
// Octagons:
ans += (*this)[10 * tetIndex + 7];
ans += (*this)[10 * tetIndex + 8];
ans += (*this)[10 * tetIndex + 9];
ans += (*this)[10 * tetIndex + 7 + vertexSplit[start][end]];
return ans;
}
NLargeInteger NNormalSurfaceVectorANStandard::getFaceArcs(
unsigned long faceIndex, int faceVertex, NTriangulation* triang) const {
// Find a tetrahedron next to the face in question.
const NFaceEmbedding& emb = triang->getFaces()[faceIndex]->
getEmbedding(0);
long tetIndex = triang->tetrahedronIndex(emb.getTetrahedron());
int vertex = emb.getVertices()[faceVertex];
int backOfFace = emb.getVertices()[3];
// Add up the discs meeting that face in that required arc.
// Triangles:
NLargeInteger ans((*this)[10 * tetIndex + vertex]);
// Quads:
ans += (*this)[10 * tetIndex + 4 + vertexSplit[vertex][backOfFace]];
// Octagons:
ans += (*this)[10 * tetIndex + 7 +
vertexSplitMeeting[vertex][backOfFace][0]];
ans += (*this)[10 * tetIndex + 7 +
vertexSplitMeeting[vertex][backOfFace][1]];
return ans;
}
NMatrixInt* NNormalSurfaceVectorANStandard::makeMatchingEquations(
NTriangulation* triangulation) {
unsigned long nCoords = 10 * triangulation->getNumberOfTetrahedra();
// Three equations per non-boundary face.
// F_boundary + 2 F_internal = 4 T
long nEquations = 3 * (4 * long(triangulation->getNumberOfTetrahedra()) -
long(triangulation->getNumberOfFaces()));
NMatrixInt* ans = new NMatrixInt(nEquations, nCoords);
// Run through each internal face and add the corresponding three
// equations.
unsigned row = 0;
int i;
unsigned long tet0, tet1;
NPerm perm0, perm1;
for (NTriangulation::FaceIterator fit = triangulation->getFaces().begin();
fit != triangulation->getFaces().end(); fit++) {
if (! (*fit)->isBoundary()) {
tet0 = triangulation->tetrahedronIndex(
(*fit)->getEmbedding(0).getTetrahedron());
tet1 = triangulation->tetrahedronIndex(
(*fit)->getEmbedding(1).getTetrahedron());
perm0 = (*fit)->getEmbedding(0).getVertices();
perm1 = (*fit)->getEmbedding(1).getVertices();
for (i=0; i<3; i++) {
// Triangles:
ans->entry(row, 10*tet0 + perm0[i]) += 1;
ans->entry(row, 10*tet1 + perm1[i]) -= 1;
// Quads:
ans->entry(row, 10*tet0 + 4 +
vertexSplit[perm0[i]][perm0[3]]) += 1;
ans->entry(row, 10*tet1 + 4 +
vertexSplit[perm1[i]][perm1[3]]) -= 1;
// Octagons:
ans->entry(row, 10*tet0 + 7 +
vertexSplitMeeting[perm0[i]][perm0[3]][0]) += 1;
ans->entry(row, 10*tet1 + 7 +
vertexSplitMeeting[perm1[i]][perm1[3]][0]) -= 1;
ans->entry(row, 10*tet0 + 7 +
vertexSplitMeeting[perm0[i]][perm0[3]][1]) += 1;
ans->entry(row, 10*tet1 + 7 +
vertexSplitMeeting[perm1[i]][perm1[3]][1]) -= 1;
row++;
}
}
}
return ans;
}
NCompConstraintSet* NNormalSurfaceVectorANStandard::makeEmbeddedConstraints(
NTriangulation* triangulation) {
// At most one quad/oct per tetrahedron.
// Also at most one oct type overall.
NCompConstraintSet* ans = new NCompConstraintSet();
NCompConstraint* globalOctConstraint = new NCompConstraint(1);
std::set<unsigned>& globalOctCoords(globalOctConstraint->getCoordinates());
NCompConstraint* constraint;
unsigned i;
unsigned long base = 0;
for (unsigned long tet = 0; tet < triangulation->getNumberOfTetrahedra();
tet++) {
constraint = new NCompConstraint(1);
for (i = 4; i < 10; i++)
constraint->getCoordinates().insert(
constraint->getCoordinates().end(), base + i);
for (i = 7; i < 10; i++)
globalOctCoords.insert(globalOctCoords.end(), base + i);
base += 10;
ans->push_back(constraint);
}
ans->push_back(globalOctConstraint);
return ans;
}
} // namespace regina
|