1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <deque>
#include "enumerate/ncompconstraint.h"
#include "surfaces/nsquad.h"
#include "surfaces/nsstandard.h"
#include "utilities/nrational.h"
#include "maths/nmatrixint.h"
#include "maths/nmatrixfield.h"
#include "maths/nvectorunit.h"
#include "triangulation/ntriangulation.h"
namespace regina {
NMatrixInt* NNormalSurfaceVectorQuad::makeMatchingEquations(
NTriangulation* triangulation) {
unsigned long nCoords = 3 * triangulation->getNumberOfTetrahedra();
// One equation per non-boundary edge.
long nEquations = long(triangulation->getNumberOfEdges());
for (NTriangulation::BoundaryComponentIterator bit = triangulation->
getBoundaryComponents().begin();
bit != triangulation->getBoundaryComponents().end(); bit++)
nEquations -= (*bit)->getNumberOfEdges();
NMatrixInt* ans = new NMatrixInt(nEquations, nCoords);
unsigned long row = 0;
// Run through each internal edge and add the corresponding
// equation.
std::deque<NEdgeEmbedding>::const_iterator embit;
NPerm perm;
unsigned long tetIndex;
for (NTriangulation::EdgeIterator eit = triangulation->getEdges().begin();
eit != triangulation->getEdges().end(); eit++) {
if (! (*eit)->isBoundary()) {
for (embit = (*eit)->getEmbeddings().begin();
embit != (*eit)->getEmbeddings().end(); embit++) {
tetIndex = triangulation->tetrahedronIndex(
(*embit).getTetrahedron());
perm = (*embit).getVertices();
ans->entry(row, 3 * tetIndex + vertexSplit[perm[0]][perm[2]])
+= 1;
ans->entry(row, 3 * tetIndex + vertexSplit[perm[0]][perm[3]])
-= 1;
}
row++;
}
}
return ans;
}
NCompConstraintSet* NNormalSurfaceVectorQuad::makeEmbeddedConstraints(
NTriangulation* triangulation) {
NCompConstraintSet* ans = new NCompConstraintSet();
NCompConstraint* constraint;
unsigned i;
unsigned long base = 0;
for (unsigned long tet = 0; tet < triangulation->getNumberOfTetrahedra();
tet++) {
constraint = new NCompConstraint(1);
for (i = 0; i < 3; i++)
constraint->getCoordinates().insert(
constraint->getCoordinates().end(), base + i);
base += 3;
ans->push_back(constraint);
}
return ans;
}
namespace {
/**
* A structure representing a particular end of an edge.
*/
struct EdgeEnd {
NEdge* edge;
/**< The edge under consideration. */
int end;
/**< The end of the edge under consideration; this is 0 or 1. */
EdgeEnd() {}
EdgeEnd(NEdge* newEdge, int newEnd) : edge(newEdge), end(newEnd) {}
EdgeEnd(const EdgeEnd& cloneMe) : edge(cloneMe.edge),
end(cloneMe.end) {}
void operator = (const EdgeEnd& cloneMe) {
edge = cloneMe.edge; end = cloneMe.end;
}
};
}
NNormalSurfaceVector* NNormalSurfaceVectorQuad::makeMirror(
NTriangulation* triang) const {
// We're going to do this by wrapping around each edge and seeing
// what comes.
unsigned long nRows = 7 * triang->getNumberOfTetrahedra();
NNormalSurfaceVectorStandard* ans =
new NNormalSurfaceVectorStandard(nRows);
// Set every triangular coordinate in the answer to infinity.
// For coordinates about vertices not enjoying infinitely many discs,
// infinity will mean "unknown".
unsigned long row;
int i;
for (row = 0; row < nRows; row+=7)
for (i = 0; i < 4; i++)
ans->setElement(row + i, NLargeInteger::infinity);
for (row = 0; 7 * row < nRows; row++)
for (i = 0; i < 3; i++)
ans->setElement(7 * row + 4 + i, (*this)[3 * row + i]);
// Run through the vertices and work out the triangular coordinates
// about each vertex in turn.
stdhash::hash_set<NEdge*, HashPointer> usedEdges[2];
// usedEdges[i] contains the edges for which we have already
// examined end i.
NLargeInteger min;
// The minimum coordinate that has been assigned about this
// vertex.
std::deque<EdgeEnd> examine;
bool broken;
// Are the matching equations broken about this edge end?
int end;
NEdge* edge;
EdgeEnd current;
std::vector<NVertexEmbedding>::const_iterator vembit;
std::deque<NEdgeEmbedding>::const_iterator eembit, backupit,
endit, beginit;
NTetrahedron* tet;
NTetrahedron* adj;
NPerm tetPerm, adjPerm;
unsigned long tetIndex, adjIndex;
NLargeInteger expect;
for (NTriangulation::VertexIterator vit = triang->getVertices().begin();
vit != triang->getVertices().end(); vit++) {
usedEdges[0].clear(); usedEdges[1].clear();
examine.clear();
broken = false;
// Pick some triangular disc and set it to zero.
const NVertexEmbedding& vemb = (*vit)->getEmbedding(0);
row = 7 * triang->tetrahedronIndex(vemb.getTetrahedron())
+ vemb.getVertex();
ans->setElement(row, NLargeInteger::zero);
min = NLargeInteger::zero;
// Mark the three surrounding edge ends for examination.
for (i=0; i<4; i++) {
if (i == vemb.getVertex())
continue;
edge = vemb.getTetrahedron()->getEdge(
edgeNumber[vemb.getVertex()][i]);
end = vemb.getTetrahedron()->getEdgeMapping(
edgeNumber[vemb.getVertex()][i])[0] == i ? 1 : 0;
if (usedEdges[end].insert(edge).second)
examine.push_back(EdgeEnd(edge, end));
}
// Cycle through edge ends until we are finished or until the
// matching equations are broken. Each time we pick a value for
// a coordinate, add the corresponding nearby edge ends to the
// list of edge ends to examine.
while ((! broken) && (! examine.empty())) {
current = examine.front();
examine.pop_front();
// Run around this edge end.
// We know there is a pre-chosen coordinate somewhere; run
// forwards and find this.
beginit = current.edge->getEmbeddings().begin();
endit = current.edge->getEmbeddings().end();
for (eembit = beginit; eembit != endit; eembit++)
if (! (*ans)[7 * triang->tetrahedronIndex(
(*eembit).getTetrahedron()) +
(*eembit).getVertices()[current.end]].isInfinite())
break;
// We are now at the first pre-chosen coordinate about this
// vertex. Run backwards from here and fill in all the
// holes.
backupit = eembit;
adj = (*eembit).getTetrahedron();
adjPerm = (*eembit).getVertices();
adjIndex = triang->tetrahedronIndex(adj);
while (eembit != beginit) {
eembit--;
// Work out the coordinate for the disc type at eembit.
tet = (*eembit).getTetrahedron();
tetPerm = (*eembit).getVertices();
tetIndex = triang->tetrahedronIndex(tet);
expect =
(*ans)[7 * adjIndex + adjPerm[current.end]] +
(*ans)[7 * adjIndex + 4 +
vertexSplit[adjPerm[3]][adjPerm[current.end]]] -
(*ans)[7 * tetIndex + 4 +
vertexSplit[tetPerm[2]][tetPerm[current.end]]];
ans->setElement(7 * tetIndex + tetPerm[current.end], expect);
if (expect < min)
min = expect;
// Remember to examine the new edge end if appropriate.
edge = tet->getEdge(
edgeNumber[tetPerm[2]][tetPerm[current.end]]);
end = tet->getEdgeMapping(
edgeNumber[tetPerm[2]][tetPerm[current.end]])[0]
== tetPerm[2] ? 1 : 0;
if (usedEdges[end].insert(edge).second)
examine.push_back(EdgeEnd(edge, end));
adj = tet;
adjPerm = tetPerm;
adjIndex = tetIndex;
}
// Now move forwards from the original first pre-chosen
// coordinate and fill in the holes from here onwards,
// always checking to ensure the
// matching equations have not been broken.
eembit = backupit;
adj = (*eembit).getTetrahedron();
adjPerm = (*eembit).getVertices();
adjIndex = triang->tetrahedronIndex(adj);
for (eembit++; eembit != endit; eembit++) {
// Work out the coordinate for the disc type at eembit.
tet = (*eembit).getTetrahedron();
tetPerm = (*eembit).getVertices();
tetIndex = triang->tetrahedronIndex(tet);
expect =
(*ans)[7 * adjIndex + adjPerm[current.end]] +
(*ans)[7 * adjIndex + 4 +
vertexSplit[adjPerm[2]][adjPerm[current.end]]] -
(*ans)[7 * tetIndex + 4 +
vertexSplit[tetPerm[3]][tetPerm[current.end]]];
row = 7 * tetIndex + tetPerm[current.end];
if ((*ans)[row].isInfinite()) {
ans->setElement(row, expect);
if (expect < min)
min = expect;
// Remember to examine the new edge end if appropriate.
edge = tet->getEdge(
edgeNumber[tetPerm[3]][tetPerm[current.end]]);
end = tet->getEdgeMapping(
edgeNumber[tetPerm[3]][tetPerm[current.end]])[0]
== tetPerm[3] ? 1 : 0;
if (usedEdges[end].insert(edge).second)
examine.push_back(EdgeEnd(edge, end));
} else {
// This coordinate has already been set.
// Make sure it's the same value!
if ((*ans)[row] != expect) {
broken = true;
break;
}
}
adj = tet;
adjPerm = tetPerm;
adjIndex = tetIndex;
}
}
// If the matching equations were broken, set every coordinate
// to infinity. Otherwise subtract min from every coordinate to
// make the values as small as possible.
for (vembit = (*vit)->getEmbeddings().begin();
vembit != (*vit)->getEmbeddings().end(); vembit++) {
row = 7 * triang->tetrahedronIndex((*vembit).getTetrahedron())
+ (*vembit).getVertex();
if (broken)
ans->setElement(row, NLargeInteger::infinity);
else
ans->setElement(row, (*ans)[row] - min);
}
}
// Note that there should be no need to remove common factors since
// the quad coordinates have not changed and in theory they already
// had gcd=1.
return ans;
}
} // namespace regina
|