1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <queue>
#include "triangulation/ntriangulation.h"
namespace regina {
void NTriangulation::makeDoubleCover() {
unsigned long sheetSize = tetrahedra.size();
if (sheetSize == 0)
return;
ChangeEventBlock block(this);
// Create a second sheet of tetrahedra.
NTetrahedron** upper = new NTetrahedron*[sheetSize];
unsigned long i;
TetrahedronIterator tit = tetrahedra.begin();
for (i = 0; i < sheetSize; i++) {
upper[i] = new NTetrahedron((*tit)->getDescription());
tit++;
}
// Reset each tetrahedron orientation.
tit = tetrahedra.begin();
for (i = 0; i < sheetSize; i++) {
(*tit)->tetOrientation = 0;
upper[i]->tetOrientation = 0;
tit++;
}
// Run through the upper sheet and recreate the gluings as we
// propagate tetrahedron orientations through components.
std::queue<unsigned long> tetQueue;
/**< Tetrahedra whose orientation must be propagated. */
int face;
unsigned long upperTet;
NTetrahedron* lowerTet;
unsigned long upperAdj;
NTetrahedron* lowerAdj;
int lowerAdjOrientation;
NPerm gluing;
for (i = 0; i < sheetSize; i++)
if (upper[i]->tetOrientation == 0) {
// We've found a new component.
// Completely recreate the gluings for this component.
upper[i]->tetOrientation = 1;
tetrahedra[i]->tetOrientation = -1;
tetQueue.push(i);
while (! tetQueue.empty()) {
upperTet = tetQueue.front();
tetQueue.pop();
lowerTet = tetrahedra[upperTet];
for (face = 0; face < 4; face++) {
lowerAdj = lowerTet->getAdjacentTetrahedron(face);
// See if this tetrahedron is glued to something in the
// lower sheet.
if (! lowerAdj)
continue;
// Make sure we haven't already fixed this gluing in
// the upper sheet.
if (upper[upperTet]->getAdjacentTetrahedron(face))
continue;
// Determine the expected orientation of the
// adjacent tetrahedron in the lower sheet.
gluing = lowerTet->getAdjacentTetrahedronGluing(face);
lowerAdjOrientation = (gluing.sign() == 1 ?
-lowerTet->tetOrientation : lowerTet->tetOrientation);
upperAdj = tetrahedronIndex(lowerAdj);
if (lowerAdj->tetOrientation == 0) {
// We haven't seen the adjacent tetrahedron yet.
lowerAdj->tetOrientation = lowerAdjOrientation;
upper[upperAdj]->tetOrientation = -lowerAdjOrientation;
upper[upperTet]->joinTo(face, upper[upperAdj], gluing);
tetQueue.push(upperAdj);
} else if (lowerAdj->tetOrientation ==
lowerAdjOrientation) {
// The adjacent tetrahedron already has the
// correct orientation.
upper[upperTet]->joinTo(face, upper[upperAdj], gluing);
} else {
// The adjacent tetrahedron already has the
// incorrect orientation. Make a cross between
// the two sheets.
lowerTet->unjoin(face);
lowerTet->joinTo(face, upper[upperAdj], gluing);
upper[upperTet]->joinTo(face, lowerAdj, gluing);
}
}
}
}
// Add the new tetrahedra to the triangulation.
for (i = 0; i < sheetSize; i++)
tetrahedra.push_back(upper[i]);
// Tidy up.
delete[] upper;
gluingsHaveChanged();
}
} // namespace regina
|