File: crushtri.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (335 lines) | stat: -rw-r--r-- 12,334 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "triangulation/ntriangulation.h"

namespace regina {

void NTriangulation::maximalForestInBoundary(
        stdhash::hash_set<NEdge*, HashPointer>& edgeSet,
        stdhash::hash_set<NVertex*, HashPointer>& vertexSet) const {
    if (! calculatedSkeleton)
        calculateSkeleton();

    vertexSet.clear();
    edgeSet.clear();
    for (BoundaryComponentIterator bit = boundaryComponents.begin();
            bit != boundaryComponents.end(); bit++)
        stretchBoundaryForestFromVertex((*bit)->getVertex(0),
            edgeSet, vertexSet);
}

void NTriangulation::stretchBoundaryForestFromVertex(NVertex* from,
        stdhash::hash_set<NEdge*, HashPointer>& edgeSet,
        stdhash::hash_set<NVertex*, HashPointer>& vertexSet) const {
    vertexSet.insert(from);

    std::vector<NVertexEmbedding>::const_iterator it =
        from->getEmbeddings().begin();
    NTetrahedron* tet;
    NVertex* otherVertex;
    NEdge* edge;
    int vertex, yourVertex;
    while (it != from->getEmbeddings().end()) {
        const NVertexEmbedding& emb = *it;
        tet = emb.getTetrahedron();
        vertex = emb.getVertex();
        for (yourVertex = 0; yourVertex < 4; yourVertex++) {
            if (vertex == yourVertex)
                continue;
            edge = tet->getEdge(edgeNumber[vertex][yourVertex]);
            if (! (edge->isBoundary()))
                continue;
            otherVertex = tet->getVertex(yourVertex);
            if (! vertexSet.count(otherVertex)) {
                edgeSet.insert(edge);
                stretchBoundaryForestFromVertex(otherVertex, edgeSet,
                    vertexSet);
            }
        }
        it++;
    }
}

void NTriangulation::maximalForestInSkeleton(
        stdhash::hash_set<NEdge*, HashPointer>& edgeSet,
        bool canJoinBoundaries) const {
    if (! calculatedSkeleton)
        calculateSkeleton();

    stdhash::hash_set<NVertex*, HashPointer> vertexSet;
    stdhash::hash_set<NVertex*, HashPointer> thisBranch;

    if (canJoinBoundaries)
        edgeSet.clear();
    else
        maximalForestInBoundary(edgeSet, vertexSet);

    for (VertexIterator vit = vertices.begin(); vit != vertices.end(); vit++)
        if (! (vertexSet.count(*vit))) {
            stretchForestFromVertex(*vit, edgeSet, vertexSet, thisBranch);
            thisBranch.clear();
        }
}

bool NTriangulation::stretchForestFromVertex(NVertex* from,
        stdhash::hash_set<NEdge*, HashPointer>& edgeSet,
        stdhash::hash_set<NVertex*, HashPointer>& vertexSet,
        stdhash::hash_set<NVertex*, HashPointer>& thisStretch) const {
    // Moves out from the vertex until we hit a vertex that has already
    //     been visited; then stops.
    // Returns true if we make such a link.
    // PRE: Such a link has not already been made.
    vertexSet.insert(from);
    thisStretch.insert(from);

    std::vector<NVertexEmbedding>::const_iterator it =
        from->getEmbeddings().begin();
    NTetrahedron* tet;
    NVertex* otherVertex;
    int vertex, yourVertex;
    bool madeLink = false;
    while (it != from->getEmbeddings().end()) {
        const NVertexEmbedding& emb = *it;
        tet = emb.getTetrahedron();
        vertex = emb.getVertex();
        for (yourVertex = 0; yourVertex < 4; yourVertex++) {
            if (vertex == yourVertex)
                continue;
            otherVertex = tet->getVertex(yourVertex);
            if (thisStretch.count(otherVertex))
                continue;
            madeLink = vertexSet.count(otherVertex);
            edgeSet.insert(tet->getEdge(edgeNumber[vertex][yourVertex]));
            if (! madeLink)
                madeLink =
                    stretchForestFromVertex(otherVertex, edgeSet, vertexSet,
                    thisStretch);
            if (madeLink)
                return true;
        }
        it++;
    }
    return false;
}

bool NTriangulation::crushMaximalForest() {
    // First obtain a maximal forest in the 1-skeleton.
    stdhash::hash_set<NEdge*, HashPointer> cEdges;
    maximalForestInSkeleton(cEdges, false);

    /* --- DEBUGGING OUTPUT ---
    {
        stdhash::hash_set<NFace*, HashPointer> dual;
        maximalForestInDualSkeleton(dual);
        cerr << "Dual Faces: " << dual.size() << '\n';
        NPointerSetIterator<NFace> it(dual);
        while (! it.done()) {
            cerr << faceIndex(*it) << ' ';
            it++;
        }
        cerr << '\n';
    }

    cerr << "Edges going: " << cEdges.size() << '\n';
    {
        NPointerSetIterator<NEdge> it(cEdges);
        while (! it.done()) {
            cerr << edgeIndex(*it) << ' ';
            it++;
        }
        cerr << '\n';
    }
    ------------------------*/

    stdhash::hash_set<NTetrahedron*, HashPointer> cTetrahedra;

    // Extend this list of collapsings to faces.
    NTetrahedron* tet;
    TetrahedronIterator tit;
    int face, edge;
    int nLost;
    bool changed = true;
    while (changed) {
        changed = false;
        for (tit = tetrahedra.begin(); tit != tetrahedra.end(); tit++) {
            tet = *tit;
            for (face = 0; face < 4; face++) {
                nLost = 0;
                for (edge = 0; edge < 6; edge++) {
                    if (edgeStart[edge] == face || edgeEnd[edge] == face)
                        continue;
                    if (cEdges.count(tet->getEdge(edge)))
                        nLost++;
                }
                // Changed > 1 below to == 2 since we're not storing
                // faces.
                if (nLost == 2) {
                    for (edge = 0; edge < 6; edge++) {
                        if (edgeStart[edge] == face || edgeEnd[edge] == face)
                            continue;
                        cEdges.insert(tet->getEdge(edge));
                    }
                    changed = true;
                }
            }
        }
    }

    // Finally extend this list to tetrahedra.
    for (tit = tetrahedra.begin(); tit != tetrahedra.end(); tit++) {
        tet = *tit;
        for (edge = 0; edge < 6; edge++)
            if (cEdges.count(tet->getEdge(edge))) {
                cTetrahedra.insert(tet);
                break;
            }
    }

    // Are we going to change anything?
    if (cTetrahedra.empty())
        return false;

    ChangeEventBlock block(this);

    // Prepare to measure the change in topology.
    /*
    const NAbelianGroup& h1(getHomologyH1());
    unsigned long oldComponents = components.size();
    unsigned long oldRank = h1.getRank();
    unsigned long oldRank2 = h1.getTorsionRank(2);
    unsigned long oldRank3 = h1.getTorsionRank(3);
    */

    // Reglue the surviving tetrahedra.
    NTetrahedron* adjTet;
    NTetrahedron* tmpTet;
    NPerm adjPerm;
    int adjFace, edgeFrom;
    for (tit = tetrahedra.begin(); tit != tetrahedra.end(); tit++) {
        tet = *tit;
        if (! cTetrahedra.count(tet))
            for (face = 0; face < 4; face++) {
                adjTet = tet->getAdjacentTetrahedron(face);
                if (adjTet == 0)
                    continue;
                if (! cTetrahedra.count(adjTet))
                    continue;
                adjPerm = tet->getAdjacentTetrahedronGluing(face);
                adjFace = adjPerm[face];
                while(1) {
                    // Follow through to the next face.
                    for (edgeFrom = 0; edgeFrom < 4; edgeFrom++) {
                        if (edgeFrom == adjFace)
                            continue;
                        if (! (cEdges.count(adjTet->
                                getEdge(edgeNumber[adjFace][edgeFrom]))))
                            continue;
                        break;
                    }
                    // Follow edge from edgeFrom to adjFace.
                    // The face of adjTet we now move to is edgeFrom.
                    tmpTet = adjTet->getAdjacentTetrahedron(edgeFrom);
                    if (tmpTet == 0) {
                        // Make the original face a boundary face.
                        tet->unjoin(face);
                        break;
                    }
                    adjPerm = adjTet->getAdjacentTetrahedronGluing(edgeFrom) *
                        NPerm(adjFace, edgeFrom) * adjPerm;
                    adjFace = adjPerm[face];
                    adjTet = tmpTet;

                    if (! (cTetrahedra.count(adjTet))) {
                        // Glue the original face to this safe
                        // tetrahedron.
                        tet->unjoin(face);
                        adjTet->unjoin(adjFace);
                        tet->joinTo(face, adjTet, adjPerm);
                        break;
                    }
                }
            }
    }

    // Remove the squished tetrahedra.
    // For each tetrahedron, remove it and delete it.
    for (stdhash::hash_set<NTetrahedron*, HashPointer>::iterator tetIt =
            cTetrahedra.begin(); tetIt != cTetrahedra.end(); tetIt++) {
        tetrahedra.erase(tetrahedra.begin() + tetrahedronIndex(*tetIt));
        delete *tetIt;
    }

    // Tidy up.
    gluingsHaveChanged();

    // Measure the change in topology.
    /*
    const NAbelianGroup& newH1 = getHomologyH1();
    extraTopology = extraTopology + NExtraTopology(
        components.size() - oldComponents,
        oldRank - newH1.getRank(),
        oldRank3 - newH1.getTorsionRank(3),
        oldRank2 - newH1.getTorsionRank(2)
        );
    */

    return true;
}

void NTriangulation::maximalForestInDualSkeleton(
        stdhash::hash_set<NFace*, HashPointer>& faceSet) const {
    if (! calculatedSkeleton)
        calculateSkeleton();

    faceSet.clear();
    stdhash::hash_set<NTetrahedron*, HashPointer> visited;
    for (TetrahedronIterator it = tetrahedra.begin(); it != tetrahedra.end();
            it++)
        if (! (visited.count(*it)))
            stretchDualForestFromTet(*it, faceSet, visited);
}

void NTriangulation::stretchDualForestFromTet(NTetrahedron* tet,
        stdhash::hash_set<NFace*, HashPointer>& faceSet,
        stdhash::hash_set<NTetrahedron*, HashPointer>& visited) const {
    visited.insert(tet);

    NTetrahedron* adjTet;
    for (int face = 0; face < 4; face++) {
        adjTet = tet->getAdjacentTetrahedron(face);
        if (adjTet)
            if (! (visited.count(adjTet))) {
                faceSet.insert(tet->getFace(face));
                stretchDualForestFromTet(adjTet, faceSet, visited);
            }
    }
}

} // namespace regina