File: hydrate.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (345 lines) | stat: -rw-r--r-- 12,582 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include <cctype>

#include "triangulation/ntriangulation.h"

/**
 * Determine the integer value represented by the given letter.
 */
#define VAL(x) ((x) - 'a')

/**
 * Determine the letter that represents the given integer value.
 */
#define LETTER(x) (char((x) + 'a'))

namespace regina {

bool NTriangulation::insertRehydration(const std::string& dehydration) {
    unsigned len = dehydration.length();

    // Ensure the string is non-empty.
    if (len == 0)
        return false;

    // Rewrite the string in lower case and verify that it contains only
    // letters.
    std::string proper(dehydration);
    for (std::string::iterator it = proper.begin(); it != proper.end(); it++) {
        if (*it >= 'A' && *it <= 'Z')
            *it = *it + ('a' - 'A');
        else if (*it < 'a' || *it > 'z')
            return false;
    }

    // Determine the number of tetrahedra.
    unsigned nTet = VAL(proper[0]);

    // Determine the expected length of each piece of the dehydrated string.
    unsigned lenNewTet = 2 * ((nTet + 3) / 4);
    unsigned lenGluings = nTet + 1;

    // Ensure the string has the expected length.
    if (len != 1 + lenNewTet + lenGluings + lenGluings)
        return false;

    // Determine which face gluings should involve new tetrahedra.
    bool* newTetGluings = new bool[2 * nTet];

    unsigned val;
    unsigned i, j;
    for (i = 0; i < lenNewTet; i++) {
        val = VAL(proper[i + 1]);
        if (val > 15) {
            delete[] newTetGluings;
            return false;
        }

        if (i % 2 == 0) {
            // This letter stores values 4i+4 -> 4i+7.
            for (j = 0; (j < 4) && (4*i + 4 + j < 2 * nTet); j++)
                newTetGluings[4*i + 4 + j] = ((val & (1 << j)) != 0);
        } else {
            // This letter stores values 4i-4 -> 4i-1.
            for (j = 0; (j < 4) && (4*i - 4 + j < 2 * nTet); j++)
                newTetGluings[4*i - 4 + j] = ((val & (1 << j)) != 0);
        }
    }

    // Create the tetrahedra and start gluing.
    NTetrahedron** tet = new NTetrahedron*[nTet];
    for (i = 0; i < nTet; i++)
        tet[i] = new NTetrahedron();

    unsigned currTet = 0;       // Tetrahedron of the next face to glue.
    int currFace = 0;           // Face number of the next face to glue.
    unsigned gluingsMade = 0;   // How many face pairs have we already glued?
    unsigned specsUsed = 0;     // How many gluing specs have we already used?
    unsigned tetsUsed = 0;      // How many tetrahedra have we already used?
    bool broken = false;        // Have we come across an inconsistency?
    unsigned adjTet;            // The tetrahedron to glue this to.
    unsigned permIndex;         // The index of the gluing permutation to use.
    NPerm adjPerm;              // The gluing permutation to use.
    NPerm identity;             // The identity permutation.
    NPerm reverse(3,2,1,0);     // The reverse permutation.

    while (currTet < nTet) {
        // Is this face already glued?
        if (tet[currTet]->getAdjacentTetrahedron(currFace)) {
            if (currFace < 3)
                currFace++;
            else {
                currFace = 0;
                currTet++;
            }
            continue;
        }

        // If this is a new tetrahedron, be aware of this fact.
        if (tetsUsed <= currTet)
            tetsUsed = currTet + 1;

        // Do we simply glue to a new tetrahedron?
        if (newTetGluings[gluingsMade]) {
            // Glue to tetrahedron tetsUsed.
            if (tetsUsed < nTet) {
                tet[currTet]->joinTo(currFace, tet[tetsUsed], identity);
                tetsUsed++;
            } else {
                broken = true;
                break;
            }
        } else {
            // Glue according to the next gluing spec.
            if (specsUsed >= lenGluings) {
                broken = true;
                break;
            }

            adjTet = VAL(proper[1 + lenNewTet + specsUsed]);
            permIndex = VAL(proper[1 + lenNewTet + lenGluings + specsUsed]);

            if (adjTet >= nTet || permIndex >= 24) {
                broken = true;
                break;
            }

            adjPerm = orderedPermsS4[permIndex] * reverse;

            if (tet[adjTet]->getAdjacentTetrahedron(adjPerm[currFace]) ||
                    (adjTet == currTet && adjPerm[currFace] == currFace)) {
                broken = true;
                break;
            }

            tet[currTet]->joinTo(currFace, tet[adjTet], adjPerm);

            specsUsed++;
        }

        // Increment everything for the next gluing.
        gluingsMade++;

        if (currFace < 3)
            currFace++;
        else {
            currFace = 0;
            currTet++;
        }
    }

    // Insert the tetrahedra into the triangulation and we're done!
    if (broken)
        for (i = 0; i < nTet; i++)
            delete tet[i];
    else {
        ChangeEventBlock block(this);
        for (i = 0; i < nTet; i++)
            addTetrahedron(tet[i]);
    }

    delete[] newTetGluings;
    delete[] tet;

    return (! broken);
}

std::string NTriangulation::dehydrate() const {
    // Can we even dehydrate at all?
    if (tetrahedra.size() > 25 || hasBoundaryFaces() || ! isConnected())
        return "";

    // Get the empty case out of the way, since it requires an
    // additional two redundant letters (two blocks of N+1 letters to
    // specify "non-obvious gluings").
    if (tetrahedra.empty())
        return "aaa";

    // Find an isomorphism that will put the triangulation in a form
    // sufficiently "canonical" to be described by a dehydration string.
    // When walking through faces from start to finish, this affects
    // only gluings to previously unseen tetrahedra:
    // (i) such gluings must be to the smallest numbered unused tetrahedron;
    // (ii) the gluing permutation must be the identity permutation.
    //
    // The array image[] maps tetrahedron numbers from this
    // triangulation to the canonical triangulation; preImage[] is the
    // inverse map.  The array vertexMap[] describes the corresponding
    // rearrangement of tetrahedron vertices and faces; specifically,
    // vertex i of tetrahedron t of this triangulation maps to vertex
    // vertexMap[t][i] of tetrahedron image[t].
    //
    // Each element of newTet[] is an 8-bit integer.  These bits
    // describe whether the gluings for some corresponding 8 faces
    // point to previously-seen or previously-unseen tetrahedra.
    // See the Callahan, Hildebrand and Weeks paper for details.
    unsigned nTets = tetrahedra.size();
    int* image = new int[nTets];
    int* preImage = new int[nTets];
    NPerm* vertexMap = new NPerm[nTets];

    unsigned char* newTet = new unsigned char[(nTets / 4) + 2];
    unsigned newTetPos = 0;
    unsigned newTetBit = 0;

    char* destChars = new char[nTets + 2];
    char* permChars = new char[nTets + 2];
    unsigned currGluingPos = 0;

    unsigned nextUnused = 1;
    unsigned tetIndex, tet, dest, faceIndex, face;
    NPerm map;
    unsigned mapIndex;

    for (tet = 0; tet < nTets; tet++)
        image[tet] = preImage[tet] = -1;

    image[0] = preImage[0] = 0;
    vertexMap[0] = NPerm();
    newTet[0] = 0;

    for (tetIndex = 0; tetIndex < nTets; tetIndex++) {
        // We must run through the tetrahedra in image order, not
        // preimage order.
        tet = preImage[tetIndex];

        for (faceIndex = 0; faceIndex < 4; faceIndex++) {
            // Likewise for faces.
            face = vertexMap[tet].preImageOf(faceIndex);

            // INVARIANTS (held while tet < nTets):
            // - nextUnused > tetIndex
            // - image[tet], preImage[image[tet]] and vertexMap[tet] are
            //   all filled in.
            // These invariants are preserved because the triangulation is
            // connected.  They break when tet == nTets.
            dest = tetrahedronIndex(
                tetrahedra[tet]->getAdjacentTetrahedron(face));

            // Is it a gluing we've already seen from the other side?
            if (image[dest] >= 0)
                if (image[dest] < image[tet] || (image[dest] == image[tet] &&
                        vertexMap[tet][tetrahedra[tet]->getAdjacentFace(face)]
                        < vertexMap[tet][face]))
                    continue;

            // Is it a completely new tetrahedron?
            if (image[dest] < 0) {
                // Previously unseen.
                image[dest] = nextUnused;
                preImage[nextUnused] = dest;
                vertexMap[dest] = vertexMap[tet] *
                    tetrahedra[tet]->getAdjacentTetrahedronGluing(face).
                    inverse();
                nextUnused++;

                newTet[newTetPos] |= (1 << newTetBit);
            } else {
                // It's a tetrahedron we've seen before.  Record the gluing.
                // Don't forget that our permutation abcd becomes dcba
                // in dehydration language.
                destChars[currGluingPos] = LETTER(image[dest]);
                map = vertexMap[dest] *
                    tetrahedra[tet]->getAdjacentTetrahedronGluing(face) *
                    vertexMap[tet].inverse() * NPerm(3, 2, 1, 0);
                // Just loop to find the index of the corresponding
                // gluing permutation.  There's only 24 permutations and
                // at most 25 tetrahedra; we'll live with it.
                for (mapIndex = 0; mapIndex < 24; mapIndex++)
                    if (map == orderedPermsS4[mapIndex])
                        break;
                permChars[currGluingPos] = LETTER(mapIndex);

                currGluingPos++;
            }

            newTetBit++;
            if (newTetBit == 8) {
                newTetPos++;
                newTetBit = 0;
                newTet[newTetPos] = 0;
            }
        }
    }

    // We have all we need.  Tidy up the strings and put them all
    // together.
    if (newTetBit > 0) {
        // We're partway through a bitset; assume it's finished and
        // point to the next unused slot in the array.
        newTetPos++;
        newTetBit = 0;
    }

    // At this stage we should have currGluingPos == nTets + 1.
    destChars[currGluingPos] = 0;
    permChars[currGluingPos] = 0;

    std::string ans;
    ans += LETTER(nTets);
    for (unsigned i = 0; i < newTetPos; i++) {
        ans += LETTER(newTet[i] >> 4);
        ans += LETTER(newTet[i] & 15);
    }
    ans += destChars;
    ans += permChars;

    // Done!
    delete[] permChars;
    delete[] destChars;
    delete[] vertexMap;
    delete[] preImage;
    delete[] image;

    return ans;
}

} // namespace regina