1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "split/nsignature.h"
#include "triangulation/nexampletriangulation.h"
#include "triangulation/ntriangulation.h"
namespace {
static const int poincareAdj[5][4] = {
{ 1, 2, 3, 4},
{ 0, 2, 3, 4},
{ 0, 1, 3, 4},
{ 0, 1, 2, 4},
{ 0, 1, 2, 3}
};
static const int poincareGluings[5][4][4] = {
{ { 0, 2, 3, 1 }, { 3, 0, 1, 2 }, { 2, 3, 0, 1 }, { 3, 1, 2, 0 } },
{ { 0, 3, 1, 2 }, { 2, 1, 3, 0 }, { 3, 0, 1, 2 }, { 2, 3, 0, 1 } },
{ { 1, 2, 3, 0 }, { 3, 1, 0, 2 }, { 1, 3, 2, 0 }, { 3, 0, 1, 2 } },
{ { 2, 3, 0, 1 }, { 1, 2, 3, 0 }, { 3, 0, 2, 1 }, { 1, 2, 0, 3 } },
{ { 3, 1, 2, 0 }, { 2, 3, 0, 1 }, { 1, 2, 3, 0 }, { 2, 0, 1, 3 } }
};
static const int closedOrHypAdj[9][4] = {
{ 6, 8, 2, 8 },
{ 6, 8, 3, 7 },
{ 7, 0, 3, 4 },
{ 1, 5, 5, 2 },
{ 2, 6, 5, 7 },
{ 3, 8, 3, 4 },
{ 0, 4, 7, 1 },
{ 1, 4, 2, 6 },
{ 1, 0, 5, 0 }
};
static const int closedOrHypGluings[9][4][4] = {
{ { 0, 1, 3, 2 }, { 3, 1, 2, 0 }, { 0, 2, 1, 3 }, { 0, 2, 1, 3 } },
{ { 3, 1, 2, 0 }, { 1, 0, 2, 3 }, { 3, 2, 0, 1 }, { 2, 3, 1, 0 } },
{ { 2, 0, 3, 1 }, { 0, 2, 1, 3 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
{ { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 2, 1, 0, 3 }, { 0, 1, 3, 2 } },
{ { 3, 1, 2, 0 }, { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 3, 2, 0, 1 } },
{ { 2, 1, 0, 3 }, { 0, 2, 1, 3 }, { 2, 3, 1, 0 }, { 0, 1, 3, 2 } },
{ { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
{ { 3, 2, 0, 1 }, { 2, 3, 1, 0 }, { 1, 3, 0, 2 }, { 0, 1, 3, 2 } },
{ { 1, 0, 2, 3 }, { 3, 1, 2, 0 }, { 0, 2, 1, 3 }, { 0, 2, 1, 3 } }
};
static const int closedNorHypAdj[11][4] = {
{ 8, 2, 8, 2 },
{ 5, 3, 2, 9 },
{ 1, 4, 0, 0 },
{ 6, 1, 4, 6 },
{ 10, 2, 10, 3 },
{ 7, 7, 6, 1 },
{ 8, 3, 3, 5 },
{ 5, 9, 8, 5 },
{ 0, 0, 6, 7 },
{ 10, 10, 1, 7 },
{ 9, 4, 4, 9 }
};
static const int closedNorHypGluings[11][4][4] = {
{ { 1, 3, 2, 0 }, { 0, 3, 2, 1 }, { 2, 1, 0, 3 }, { 3, 1, 0, 2 } },
{ { 3, 0, 1, 2 }, { 3, 1, 0, 2 }, { 2, 1, 0, 3 }, { 1, 0, 3, 2 } },
{ { 2, 1, 0, 3 }, { 3, 1, 2, 0 }, { 2, 1, 3, 0 }, { 0, 3, 2, 1 } },
{ { 2, 1, 3, 0 }, { 2, 1, 3, 0 }, { 2, 0, 3, 1 }, { 0, 3, 2, 1 } },
{ { 2, 1, 0, 3 }, { 3, 1, 2, 0 }, { 3, 2, 1, 0 }, { 1, 3, 0, 2 } },
{ { 3, 1, 2, 0 }, { 1, 0, 3, 2 }, { 0, 1, 3, 2 }, { 1, 2, 3, 0 } },
{ { 2, 1, 0, 3 }, { 0, 3, 2, 1 }, { 3, 1, 0, 2 }, { 0, 1, 3, 2 } },
{ { 1, 0, 3, 2 }, { 0, 3, 2, 1 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
{ { 2, 1, 0, 3 }, { 3, 0, 2, 1 }, { 2, 1, 0, 3 }, { 0, 1, 3, 2 } },
{ { 3, 1, 2, 0 }, { 2, 0, 1, 3 }, { 1, 0, 3, 2 }, { 0, 3, 2, 1 } },
{ { 1, 2, 0, 3 }, { 3, 2, 1, 0 }, { 2, 1, 0, 3 }, { 3, 1, 2, 0 } }
};
static const int whiteheadAdj[4][4] = {
{ 3, 2, 1, 3},
{ 3, 2, 2, 0},
{ 1, 3, 0, 1},
{ 2, 0, 0, 1}
};
static const int whiteheadGluings[4][4][4] = {
{ { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 0, 1, 3, 2 }, { 3, 2, 0, 1 } },
{ { 3, 2, 0, 1 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 0, 1, 3, 2 } },
{ { 2, 3, 1, 0 }, { 1, 0, 2, 3 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 } },
{ { 1, 0, 2, 3 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 2, 3, 1, 0 } }
};
}
namespace regina {
NTriangulation* NExampleTriangulation::threeSphere() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("3-sphere");
ans->insertLayeredLensSpace(1, 0);
return ans;
}
NTriangulation* NExampleTriangulation::s2xs1() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("S2 x S1");
ans->insertLayeredLensSpace(0, 1);
return ans;
}
NTriangulation* NExampleTriangulation::rp2xs1() {
// Section 3.5.1 of Benjamin Burton's PhD thesis describes how to
// construct RP^2 x S^1 by identifying the boundary faces of a
// solid Klein bottle.
NTriangulation* ans = solidKleinBottle();
ans->setPacketLabel("RP2 x S1");
NTetrahedron* r = ans->getTetrahedron(0);
NTetrahedron* t = ans->getTetrahedron(2);
r->joinTo(1, t, NPerm(2, 3, 0, 1));
r->joinTo(3, t, NPerm(2, 3, 0, 1));
ans->gluingsHaveChanged();
return ans;
}
NTriangulation* NExampleTriangulation::rp3rp3() {
// This can be generated as the enclosing triangulation of a splitting
// surface, as described in chapter 4 of Benjamin Burton's PhD thesis.
NSignature* sig = NSignature::parse("aabccd.b.d");
NTriangulation* ans = sig->triangulate();
ans->setPacketLabel("RP3 # RP3");
delete sig;
return ans;
}
NTriangulation* NExampleTriangulation::lens8_3() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("L(8,3)");
ans->insertLayeredLensSpace(8, 3);
return ans;
}
NTriangulation* NExampleTriangulation::poincareHomologySphere() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Poincare homology sphere");
ans->insertConstruction(5, poincareAdj, poincareGluings);
return ans;
}
NTriangulation* NExampleTriangulation::seifertWeber() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Seifert-Weber dodecahedral space");
// Bah. Dehydration strings are somewhat impenetrable,
// but the alternative is 23 lines of hard-coded tetrahedron gluings.
//
// This triangulation was constructed by building a 60-tetrahedron
// dodecahedron and identifying opposite faces with a 3/10 twist,
// and then simplifying down to one vertex and 23 tetrahedra.
ans->insertRehydration(
"xppphocgaeaaahimmnkontspmuuqrsvuwtvwwxwjjsvvcxxjjqattdwworrko");
return ans;
}
NTriangulation* NExampleTriangulation::smallClosedOrblHyperbolic() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Closed orientable hyperbolic 3-manifold");
ans->insertConstruction(9, closedOrHypAdj, closedOrHypGluings);
return ans;
}
NTriangulation* NExampleTriangulation::smallClosedNonOrblHyperbolic() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Closed non-orientable hyperbolic 3-manifold");
ans->insertConstruction(11, closedNorHypAdj, closedNorHypGluings);
return ans;
}
NTriangulation* NExampleTriangulation::lst3_4_7() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Layered solid torus");
ans->insertLayeredSolidTorus(3, 4);
return ans;
}
NTriangulation* NExampleTriangulation::solidKleinBottle() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Solid Klein bottle");
// A three-tetrahedron solid Klein bottle is described in section
// 3.5.1 of Benjamin Burton's PhD thesis.
NTetrahedron* r = new NTetrahedron();
NTetrahedron* s = new NTetrahedron();
NTetrahedron* t = new NTetrahedron();
s->joinTo(0, r, NPerm(0, 1, 2, 3));
s->joinTo(3, r, NPerm(3, 0, 1, 2));
s->joinTo(1, t, NPerm(3, 0, 1, 2));
s->joinTo(2, t, NPerm(0, 1, 2, 3));
ans->addTetrahedron(r);
ans->addTetrahedron(s);
ans->addTetrahedron(t);
return ans;
}
NTriangulation* NExampleTriangulation::figureEightKnotComplement() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Figure eight knot complement");
// The two-tetrahedron figure eight knot complement is described at
// the beginning of chapter 8 of Richard Rannard's PhD thesis.
NTetrahedron* r = new NTetrahedron();
NTetrahedron* s = new NTetrahedron();
r->joinTo(0, s, NPerm(1, 3, 0, 2));
r->joinTo(1, s, NPerm(2, 0, 3, 1));
r->joinTo(2, s, NPerm(0, 3, 2, 1));
r->joinTo(3, s, NPerm(2, 1, 0, 3));
ans->addTetrahedron(r);
ans->addTetrahedron(s);
return ans;
}
NTriangulation* NExampleTriangulation::whiteheadLinkComplement() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Whitehead link complement");
ans->insertConstruction(4, whiteheadAdj, whiteheadGluings);
return ans;
}
NTriangulation* NExampleTriangulation::gieseking() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Gieseking manifold");
NTetrahedron* r = new NTetrahedron();
r->joinTo(0, r, NPerm(1, 2, 0, 3));
r->joinTo(2, r, NPerm(0, 2, 3, 1));
ans->addTetrahedron(r);
return ans;
}
NTriangulation* NExampleTriangulation::cuspedGenusTwoTorus() {
NTriangulation* ans = new NTriangulation();
ans->setPacketLabel("Cusped genus two solid torus");
// We create this by first constructing an ordinary solid genus two
// torus and then converting the real boundary to an ideal vertex.
NTetrahedron* r = new NTetrahedron();
NTetrahedron* s = new NTetrahedron();
NTetrahedron* t = new NTetrahedron();
NTetrahedron* u = new NTetrahedron();
r->joinTo(0, s, NPerm());
r->joinTo(1, t, NPerm(1, 2, 3, 0));
r->joinTo(2, u, NPerm(1, 0, 3, 2));
s->joinTo(3, t, NPerm());
t->joinTo(1, u, NPerm());
ans->addTetrahedron(r);
ans->addTetrahedron(s);
ans->addTetrahedron(t);
ans->addTetrahedron(u);
ans->finiteToIdeal();
return ans;
}
} // namespace regina
|