File: nexampletriangulation.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (309 lines) | stat: -rw-r--r-- 11,176 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "split/nsignature.h"
#include "triangulation/nexampletriangulation.h"
#include "triangulation/ntriangulation.h"

namespace {
    static const int poincareAdj[5][4] = {
        { 1, 2, 3, 4},
        { 0, 2, 3, 4},
        { 0, 1, 3, 4},
        { 0, 1, 2, 4},
        { 0, 1, 2, 3}
    };

    static const int poincareGluings[5][4][4] = {
        { { 0, 2, 3, 1 }, { 3, 0, 1, 2 }, { 2, 3, 0, 1 }, { 3, 1, 2, 0 } },
        { { 0, 3, 1, 2 }, { 2, 1, 3, 0 }, { 3, 0, 1, 2 }, { 2, 3, 0, 1 } },
        { { 1, 2, 3, 0 }, { 3, 1, 0, 2 }, { 1, 3, 2, 0 }, { 3, 0, 1, 2 } },
        { { 2, 3, 0, 1 }, { 1, 2, 3, 0 }, { 3, 0, 2, 1 }, { 1, 2, 0, 3 } },
        { { 3, 1, 2, 0 }, { 2, 3, 0, 1 }, { 1, 2, 3, 0 }, { 2, 0, 1, 3 } }
    };

    static const int closedOrHypAdj[9][4] = {
        { 6, 8, 2, 8 },
        { 6, 8, 3, 7 },
        { 7, 0, 3, 4 },
        { 1, 5, 5, 2 },
        { 2, 6, 5, 7 },
        { 3, 8, 3, 4 },
        { 0, 4, 7, 1 },
        { 1, 4, 2, 6 },
        { 1, 0, 5, 0 }
    };

    static const int closedOrHypGluings[9][4][4] = {
        { { 0, 1, 3, 2 }, { 3, 1, 2, 0 }, { 0, 2, 1, 3 }, { 0, 2, 1, 3 } },
        { { 3, 1, 2, 0 }, { 1, 0, 2, 3 }, { 3, 2, 0, 1 }, { 2, 3, 1, 0 } },
        { { 2, 0, 3, 1 }, { 0, 2, 1, 3 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
        { { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 2, 1, 0, 3 }, { 0, 1, 3, 2 } },
        { { 3, 1, 2, 0 }, { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 3, 2, 0, 1 } },
        { { 2, 1, 0, 3 }, { 0, 2, 1, 3 }, { 2, 3, 1, 0 }, { 0, 1, 3, 2 } },
        { { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
        { { 3, 2, 0, 1 }, { 2, 3, 1, 0 }, { 1, 3, 0, 2 }, { 0, 1, 3, 2 } },
        { { 1, 0, 2, 3 }, { 3, 1, 2, 0 }, { 0, 2, 1, 3 }, { 0, 2, 1, 3 } }
    };

    static const int closedNorHypAdj[11][4] = {
        { 8, 2, 8, 2 },
        { 5, 3, 2, 9 },
        { 1, 4, 0, 0 },
        { 6, 1, 4, 6 },
        { 10, 2, 10, 3 },
        { 7, 7, 6, 1 },
        { 8, 3, 3, 5 },
        { 5, 9, 8, 5 },
        { 0, 0, 6, 7 },
        { 10, 10, 1, 7 },
        { 9, 4, 4, 9 }
    };

    static const int closedNorHypGluings[11][4][4] = {
        { { 1, 3, 2, 0 }, { 0, 3, 2, 1 }, { 2, 1, 0, 3 }, { 3, 1, 0, 2 } },
        { { 3, 0, 1, 2 }, { 3, 1, 0, 2 }, { 2, 1, 0, 3 }, { 1, 0, 3, 2 } },
        { { 2, 1, 0, 3 }, { 3, 1, 2, 0 }, { 2, 1, 3, 0 }, { 0, 3, 2, 1 } },
        { { 2, 1, 3, 0 }, { 2, 1, 3, 0 }, { 2, 0, 3, 1 }, { 0, 3, 2, 1 } },
        { { 2, 1, 0, 3 }, { 3, 1, 2, 0 }, { 3, 2, 1, 0 }, { 1, 3, 0, 2 } },
        { { 3, 1, 2, 0 }, { 1, 0, 3, 2 }, { 0, 1, 3, 2 }, { 1, 2, 3, 0 } },
        { { 2, 1, 0, 3 }, { 0, 3, 2, 1 }, { 3, 1, 0, 2 }, { 0, 1, 3, 2 } },
        { { 1, 0, 3, 2 }, { 0, 3, 2, 1 }, { 0, 1, 3, 2 }, { 3, 1, 2, 0 } },
        { { 2, 1, 0, 3 }, { 3, 0, 2, 1 }, { 2, 1, 0, 3 }, { 0, 1, 3, 2 } },
        { { 3, 1, 2, 0 }, { 2, 0, 1, 3 }, { 1, 0, 3, 2 }, { 0, 3, 2, 1 } },
        { { 1, 2, 0, 3 }, { 3, 2, 1, 0 }, { 2, 1, 0, 3 }, { 3, 1, 2, 0 } }
    };

    static const int whiteheadAdj[4][4] = {
        { 3, 2, 1, 3},
        { 3, 2, 2, 0},
        { 1, 3, 0, 1},
        { 2, 0, 0, 1}
    };

    static const int whiteheadGluings[4][4][4] = {
        { { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 0, 1, 3, 2 }, { 3, 2, 0, 1 } },
        { { 3, 2, 0, 1 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 0, 1, 3, 2 } },
        { { 2, 3, 1, 0 }, { 1, 0, 2, 3 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 } },
        { { 1, 0, 2, 3 }, { 2, 3, 1, 0 }, { 3, 2, 0, 1 }, { 2, 3, 1, 0 } }
    };
}

namespace regina {

NTriangulation* NExampleTriangulation::threeSphere() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("3-sphere");

    ans->insertLayeredLensSpace(1, 0);

    return ans;
}

NTriangulation* NExampleTriangulation::s2xs1() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("S2 x S1");

    ans->insertLayeredLensSpace(0, 1);

    return ans;
}

NTriangulation* NExampleTriangulation::rp2xs1() {
    // Section 3.5.1 of Benjamin Burton's PhD thesis describes how to
    // construct RP^2 x S^1 by identifying the boundary faces of a
    // solid Klein bottle.
    NTriangulation* ans = solidKleinBottle();
    ans->setPacketLabel("RP2 x S1");

    NTetrahedron* r = ans->getTetrahedron(0);
    NTetrahedron* t = ans->getTetrahedron(2);
    r->joinTo(1, t, NPerm(2, 3, 0, 1));
    r->joinTo(3, t, NPerm(2, 3, 0, 1));
    ans->gluingsHaveChanged();

    return ans;
}

NTriangulation* NExampleTriangulation::rp3rp3() {
    // This can be generated as the enclosing triangulation of a splitting
    // surface, as described in chapter 4 of Benjamin Burton's PhD thesis.
    NSignature* sig = NSignature::parse("aabccd.b.d");
    NTriangulation* ans = sig->triangulate();
    ans->setPacketLabel("RP3 # RP3");
    delete sig;

    return ans;
}

NTriangulation* NExampleTriangulation::lens8_3() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("L(8,3)");

    ans->insertLayeredLensSpace(8, 3);

    return ans;
}

NTriangulation* NExampleTriangulation::poincareHomologySphere() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Poincare homology sphere");

    ans->insertConstruction(5, poincareAdj, poincareGluings);

    return ans;
}

NTriangulation* NExampleTriangulation::seifertWeber() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Seifert-Weber dodecahedral space");

    // Bah.  Dehydration strings are somewhat impenetrable,
    // but the alternative is 23 lines of hard-coded tetrahedron gluings.
    //
    // This triangulation was constructed by building a 60-tetrahedron
    // dodecahedron and identifying opposite faces with a 3/10 twist,
    // and then simplifying down to one vertex and 23 tetrahedra.
    ans->insertRehydration(
        "xppphocgaeaaahimmnkontspmuuqrsvuwtvwwxwjjsvvcxxjjqattdwworrko");

    return ans;
}

NTriangulation* NExampleTriangulation::smallClosedOrblHyperbolic() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Closed orientable hyperbolic 3-manifold");

    ans->insertConstruction(9, closedOrHypAdj, closedOrHypGluings);

    return ans;
}

NTriangulation* NExampleTriangulation::smallClosedNonOrblHyperbolic() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Closed non-orientable hyperbolic 3-manifold");

    ans->insertConstruction(11, closedNorHypAdj, closedNorHypGluings);

    return ans;
}

NTriangulation* NExampleTriangulation::lst3_4_7() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Layered solid torus");

    ans->insertLayeredSolidTorus(3, 4);

    return ans;
}

NTriangulation* NExampleTriangulation::solidKleinBottle() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Solid Klein bottle");

    // A three-tetrahedron solid Klein bottle is described in section
    // 3.5.1 of Benjamin Burton's PhD thesis.
    NTetrahedron* r = new NTetrahedron();
    NTetrahedron* s = new NTetrahedron();
    NTetrahedron* t = new NTetrahedron();
    s->joinTo(0, r, NPerm(0, 1, 2, 3));
    s->joinTo(3, r, NPerm(3, 0, 1, 2));
    s->joinTo(1, t, NPerm(3, 0, 1, 2));
    s->joinTo(2, t, NPerm(0, 1, 2, 3));
    ans->addTetrahedron(r);
    ans->addTetrahedron(s);
    ans->addTetrahedron(t);

    return ans;
}

NTriangulation* NExampleTriangulation::figureEightKnotComplement() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Figure eight knot complement");

    // The two-tetrahedron figure eight knot complement is described at
    // the beginning of chapter 8 of Richard Rannard's PhD thesis.
    NTetrahedron* r = new NTetrahedron();
    NTetrahedron* s = new NTetrahedron();
    r->joinTo(0, s, NPerm(1, 3, 0, 2));
    r->joinTo(1, s, NPerm(2, 0, 3, 1));
    r->joinTo(2, s, NPerm(0, 3, 2, 1));
    r->joinTo(3, s, NPerm(2, 1, 0, 3));
    ans->addTetrahedron(r);
    ans->addTetrahedron(s);

    return ans;
}

NTriangulation* NExampleTriangulation::whiteheadLinkComplement() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Whitehead link complement");

    ans->insertConstruction(4, whiteheadAdj, whiteheadGluings);

    return ans;
}

NTriangulation* NExampleTriangulation::gieseking() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Gieseking manifold");

    NTetrahedron* r = new NTetrahedron();
    r->joinTo(0, r, NPerm(1, 2, 0, 3));
    r->joinTo(2, r, NPerm(0, 2, 3, 1));
    ans->addTetrahedron(r);

    return ans;
}

NTriangulation* NExampleTriangulation::cuspedGenusTwoTorus() {
    NTriangulation* ans = new NTriangulation();
    ans->setPacketLabel("Cusped genus two solid torus");

    // We create this by first constructing an ordinary solid genus two
    // torus and then converting the real boundary to an ideal vertex.
    NTetrahedron* r = new NTetrahedron();
    NTetrahedron* s = new NTetrahedron();
    NTetrahedron* t = new NTetrahedron();
    NTetrahedron* u = new NTetrahedron();
    r->joinTo(0, s, NPerm());
    r->joinTo(1, t, NPerm(1, 2, 3, 0));
    r->joinTo(2, u, NPerm(1, 0, 3, 2));
    s->joinTo(3, t, NPerm());
    t->joinTo(1, u, NPerm());
    ans->addTetrahedron(r);
    ans->addTetrahedron(s);
    ans->addTetrahedron(t);
    ans->addTetrahedron(u);
    ans->finiteToIdeal();

    return ans;
}

} // namespace regina